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The modeling of parametric transmission by means of the spatial Fourier formalism (also called the angu-
lar spectrum method) is recalled. The secondary field can be estimated at any distance of the antenna.
Various geometries of the transmitter can be also taken into account, including elongated antennas that
feature a wide aperture in one plane. The relevance of the theoretical model with such geometry is tested
with a linear array used as a parametric transmitter in an underwater application. Numerical estimations
are compared with experimental measurements. In addition, the expected slight variation of the para-
metric efficiency with the relative phasing of the primary signals is experimentally observed.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Parametric transmission takes advantage of the non-linear
interaction of two primary beams generated by the antenna at
the high frequencies m1 and m2 [1–3]. These interactions create sec-
ondary waves at all the linear combinations of the primary fre-
quencies. The secondary beam of interest is at the difference
frequency m� = m2 � m1. The main benefit of the parametric trans-
mission is thus that a narrow beam can be generated at a low fre-
quency by means of a physical antenna whose size is not very large
compared to the parametric wavelength k�. Another interest is the
potential large frequency bandwidth that can be achieved with
such transmitters. However, a significant drawback of parametric
transmission is the poor efficiency of the non-linear conversion.
In addition, a saturation phenomenon occurs when increasing the
primary source levels, which reduces both the parametric gain
and directivity. Hence, the design of an efficient parametric trans-
mitter calls for a delicate balance of the parameters of the antenna
with respect to the required characteristics of the secondary beam.

The parametric generation is a cumulative process. The wave at
the difference frequency grows in the source volume made of the
primary waves. The Westervelt model exemplifies this principle
by considering perfectly collimated primary beams: the source vol-
ume is in fine interpreted as an end-fire array whose length is only
limited by the linear absorption of the primary waves. The para-
metric directivity is thus proportional to the square root of the
array length. In addition, the beam pattern is devoid of side-lobe.

Many other models are proposed for handling more realistic
source distributions [4–8], i.e., by taking into account altogether
ll rights reserved.
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diffraction, attenuation and saturation phenomena. In most appli-
cations, the width of the beams is relatively narrow all around the
main axis (e.g., sub-bottom profilers). The paraxial approximation
is thus convenient to model such transmitters.

In the underwater domain, a classical application of parametric
transmission is sub-bottom profiling: because of the large attenu-
ation, only low frequency waves can penetrate the sediments; but
narrow beams are also required to improve the profile resolution.
Recent projects studied the feasibility to detect buried objects by
means of high resolution imaging [9–15]. The idea is to combine
the parametric transmission and the synthetic aperture sonar tech-
niques. The parametric beam must be narrow in one direction to
achieve the required resolution in elevation, and sufficiently large
in the perpendicular direction to perform the synthetic aperture
process. The paraxial approximation is then no longer sufficient
to model the parametric projector.

The spatial Fourier formalism is well suited to handle versatile
geometries of transmitter, including elongated rectangles. A model
based on this formalism has been previously developed to estimate
the parametric field at any distance of the transmitter, taking also
into account the saturation effect [16–19]. One used this model to
study a linear array whose primary and parametric frequencies
are respectively in the ranges 80–120 kHz and 10–40 kHz, and
the angular aperture of the secondary beam at 20 kHz is around
2� � 10�. Extensive measurements have been performed in tank
with a prototype system, and then compared with the simulations.
The experiments gave also the opportunity to observe a phenome-
non that was already foreseen by an analysis of the Burgers equa-
tion [20].

The modeling of parametric antenna by means of the Fourier
formalism is summarized in Section 2. Experimental measure-
ments and comparison with the model are presented in Section 3.
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Fig. 1. Notation of coordinates with respect to the reference plane.
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2. Theory

A complete description of the parametric transmission model
can be found in our previous paper [18].

2.1. Non-linear equation

The general non-linear second order equation reads in term of
the acoustic potential /:

�
0/ ¼ Sð/Þ: ð1Þ

�
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where c0 is the sound speed in the fluid, and L is a linear operator
that describes different phenomena related to attenuation (e.g.
thermoviscous attenuation or relaxations). From a practical point
of view, this operator is often defined in the frequency domain by
using the attenuation coefficient a(m):

Lðej2pmtÞ ¼ aðmÞej2pmt: ð3Þ

In Eq. (1), S is a quadratic source term defined by:
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where b is the nonlinear coefficient of the fluid. In the quasi-linear
theory, it is assumed that: (1) the primary waves /1,2 obey the lin-
ear wave equation; (2) the secondary wave /� is created by the
interaction of the only primary waves:

�
0/1;2 ¼ 0; ð5Þ
�
0/� ¼ S�ð/1;/2Þ; ð6Þ

It is thus assumed that the source level of the primary waves is
low enough so that there is no saturation effect involved. Note that
S in Eq. (1) addresses all combinations of frequencies, whereas the
source function S� in Eq. (6) is restricted to the interaction of the
only primary waves that yields the difference frequency
component.

For higher primary levels, the above assumptions are no longer
valid. However, solving directly Eq. (1) is not practical. The primary
waves do not obey the linear equation, but a simplification can be
used to derive the parametric field /�: the evolution of the on-axis
primary levels is tapered to take into account an extra-attenuation
caused by the saturation effect, but the diffraction of the primary
fields is still described with Eq. (5). It is also still assumed that
the wave at the difference frequency is produced by the only inter-
action of the primary waves. Consequently, Eq. (6) is now replaced
by

�
0/� ¼ S�ðu1 /1;u2 /2Þ; ð7Þ

where u1(z) and u2(z) are the normalized coefficients that quantify
the extra-attenuation of the primary waves (at frequencies m1 and
m2). They are obtained by solving the generalized Burgers equation
[3,20,21] which is based on a pseudo 1-D model [22]. This equation
reads in terms of normal velocity V:
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where the diffraction coefficient m is dictated by the Fraunhofer
distances z1 and z2 of the rectangular antenna (computed at the
mean primary frequency); the initial condition is given by the nor-
mal velocities V01 and V02 at the surface of the antenna, at the pri-
mary frequencies m1 and m2. Solving Eq. (8) yields the evolution with
z of the velocities at all the linear combinations of these primary fre-
quencies. The coefficients u1 and u2 are the ratios

uiðzÞ ¼
ViðzÞ

Viðz; b ¼ 0Þ ; ð9Þ

where V(z, b = 0) is the solution of Eq. (8) with b = 0 (pseudo 1-D lin-
ear propagation).

2.2. Spatial Fourier formalism

With the spatial Fourier formalism, the acoustic fields are de-
scribed by means of the superposition of inhomogeneous plane
waves [23,24]. In a reference plane P0, the spectrum of a harmonic
field gðr; tÞ ¼ GðrÞ expð�j2pmtÞ at frequency m is the spatial Fourier
transform:

A0ðfÞ ¼
ZZ

q2P0

GðqÞ expð�j2pf � qÞdq: ð10Þ

where f is the spatial frequency and q the vector describing the
plane P0 (see Fig. 1). In the case of a linear propagation, the spec-
trum of G in the plane Pz parallel to P0 is given by:

AzðfÞ ¼ A0ðfÞ exp jkzz� k
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where a(m) is the coefficient of linear attenuation at frequency m.
The field G can be derived in any plane Pz by the inverse transform:

Gðr ¼mþ zezÞ

¼
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A0ðfÞ exp jkzz�
k
kz
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� �

expðj2pf �mÞdf: ð12Þ

where ez is the unit vector along the z-axis, and m the current point
in the plane Pz (see Fig. 1).

In the farfield, the Fraunhofer approximation yields straightfor-
wardly from the initial spectrum A0:

GðrÞ ¼ z
jkr2 expðjkr � aðmÞrÞA0

m
kr

� �
: ð13Þ
2.3. Model of parametric transmission

Using the Fourier formalism, the nonlinear propagation is ad-
dressed as the superimposition of interactions between inhomoge-
neous plane waves. In addition, because of the nonlinearity, the



Fig. 2. Primary diagram in elevation, at 100 kHz, 20 m and 50 m distance (vertical
unit is scaled as sensitivities of the whole transmitting setup, i.e., power
amplifier + transducer). Solid line: theory, marks: measurements.
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spectra in the planes Pz are no longer simply related to the spectra
in the plane P0 through Eq. (11). However, it is convenient to keep
the formulation (12), provided the reference spectrum A0ðz; fÞ
depends now on the abscissa z of the observation plane. Hence,
denoting AðpÞ0;m� ðz; f�Þ the spectrum of the parametric field (in terms
of pressure), the spatial Fourier transform of Eq. (7) leads to:

AðpÞ0;m� ðz; f�Þ ¼ �jp P�01P02bm�
q0c3
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where q0 is the fluid density, P0i ¼ q0c0V0i (i = 1, 2) are the equiva-
lent pressures for each primary radiation at the antenna surface
with normal velocity V0i, Ai¼1;2ðfÞ is the Fourier transform of the
aperture of each primary source in the reference plane P0 that con-
tains the parametric antenna (� denotes the complex conjugate
operator). The term ða� jDkÞ is given by:

Dk ¼ k2z � k1z � k�z: ð15Þ
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where a(mi) are the attenuation coefficients associated to the pri-
mary and parametric waves. The value of the parametric pressure
is then obtained by means of Eq. (12), or Eq. (13) in the farfield.

The interest of Eq. (14) is that the most constructive interac-
tions occur from quasi collinear primary plane waves, for which
Dk vanishes. It is a very useful property for the numerical imple-
mentation of this model. Such an implementation has been made
for underwater applications [18,19,25,26], where the sound speed
and attenuation of sea water are computed with the Lovett [27]
and François–Garrison [28] empirical models, respectively.

3. Experimental measurements

3.1. Setup

The active face of the investigated linear array is 72 cm long and
6 cm large. It is divided into 48 elements. Each channel is driven by
a linear power amplifier that delivers up to 50 W through a match-
ing unit. The signals are provided by a digital synthesizer with ver-
satile capabilities. The frequency band of the whole transmitter is
in the range 80–120 kHz. The primary source level is around
237 dB re 1 lParms @ 1 m. At 100 kHz, the half-power beam-width
of the whole antenna is around 1� � 12�.

The measurements were conducted in a large tank that is part
of the naval facilities in Brest. The tank is 80 m long, and 10 m
wide, with a water column height of 8.4 m. The array is hung ver-
tically from a deck across the tank, at mid-width and mid-depth.
The suspension of the array includes a vertical axis of rotation.
The 72 cm-long array is oriented along this axis, so that the
1�-aperture of the array is vertical (elevation angle) whereas the
12�-aperture is horizontal (azimuth angle). The receiving hydro-
phone (Reson TC4034) is deployed from another deck, at range
varying between 10 m and 50 m from the transmitter.

Measurements in azimuth are performed with the manual rota-
tion of the axis. The angular accuracy of the settings is sufficient
because of the order of magnitude of the azimuthal apertures
(�10�). On the other hand, the diagrams in elevation are derived
by steering electronically the beams (pure angular deviation, or
focusing also at finite distance). This technique is justified because
the total aperture in elevation of the antenna is small (primary�1�,
parametric �2�), and the aperture in elevation of each element of
the array is much larger (�50�). If physically rotated by a few de-
grees only, (1) the apparent length of the array would be almost
a constant; (2) the shading effect caused by the elementary direc-
tivity would be negligible.

The calibration of the primary beams is performed at a low
source level in order to avoid any saturation effect (�30 dB below
max level). In Fig. 2, it can be observed that the experimental data
collected in focusing the transmitter at the range of the hydropho-
ne (20 m and 50 m) match perfectly the theoretical expected far-
field pattern, both in the main lobe and the side lobes at around
±2�. The diagram obtained at 50 m by only steering the beam
(i.e., not focusing at finite distance) does not match as well, which
shows that the farfield condition is not yet entirely fulfilled at this
distance.
3.2. Results and Discussion

The parametric transmission was tested in a large number of
configurations. We present only here a few significant results.
Besides the calibration devoted to the particular application of this
antenna, the interest is twofold with such an antenna whose aper-
ture is very narrow in elevation and much larger in azimuth: (1) it
exhibits the typical behavior of the parametric transmission with
this geometry; (2) it gives the opportunity to compare experimen-
tal results with the model.

The parameters of the configurations are:

� the parametric frequency m� = m2 � m1 (10–40 kHz, step 5 kHz)
� the parametric ratio l ¼ m2þm1

2m� (2.5–10.5, depending on the para-
metric frequency)
� the distance of observation (10–50 m)

In order to ease the comparison with the model, the primary
beams are only steered, i.e., not focused at a finite distance, to mea-
sure the parametric field. In addition, all the displayed parametric
levels and diagrams are conventionally corrected for attenuation
and spherical spreading to give values referenced at 1 m.

The parametric aperture in azimuth measured at 20 m (Fig. 3)
does not vary much (9–11� at �3 dB) with the frequency settings.
As expected, it can be observed that the parametric efficiency in-
creases when the parametric ratio l decreases. The parametric
aperture in elevation (Fig. 4) is much more dependent on the dif-
ference frequency (1.6–2.4�). The mean difference in the apertures



Fig. 3. Parametric diagram in azimuth at 20 m (vertical unit is scaled as parametric
source levels). Lines: model; marks: measurements (dashed lines correspond to
empty marks, solid lines with filled marks).

Fig. 5. Parametric diagram (20 kHz) in elevation at several distances (vertical unit
is scaled as parametric source levels). Solid line: model, marks: measurements.

Fig. 6. On-axis parametric source level versus distance. Lines: model; marks:
measurements (dashed lines correspond to empty marks, solid lines with filled
marks).
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derived from the experimental data and from the model is around
0.2� (difference is slightly larger at m� = 10 kHz).

The cumulative process involved in the parametric conversion
is clearly put in evidence with the evolution of the diagrams and
levels with the distance (Figs. 5 and 6). The directivity in elevation
is significantly better at 20 m from the transmitter than at 10 m:
the variation in the longitudinal extent of the primary source is
the main cause. Beyond 20 m distance, the beam pattern is stable.
However, it can be observed that the parametric level (displayed as
an equivalent source level at 1 m) continues to increase beyond
20 m. The primary waves are still enough energetic to feed the
parametric radiation. Although the aperture in azimuth is quite
large, the parametric efficiency remains around �40 dB. For exam-
ple, the parametric source level at 20 kHz measured at 20 m is
195 dB re 1lParms @ 1 m. This level is sufficient to penetrate a sed-
iment at a few meters under the interface with the sea water.

At small parametric ratio, the relative phasing of the two fre-
quency components of the primary signal may impact on the para-
metric efficiency. This is because the shape of the primary signal
changes significantly with this phasing [20]. The experimental evi-
dence of this phenomenon has never been reported in the litera-
ture. Fig. 7 displays the parametric on-axis level obtained at
20 m. The array is driven with the signal sðtÞ / sinð2pm1tÞþ
sinð2pm2t þuÞ, with the primary frequencies m1 = 80 kHz and
m2 = 120 kHz so that l = 2.5. The variation of the parametric source
level with the phasing u increases with the primary source level.
At the maximal transmitter power (SL = 237 dB), the amplitude
of the fluctuation reaches 2 dB. This is not a very large change,
Fig. 4. Parametric diagram in elevation at 20 m (vertical unit is scaled as parametric
source levels). Solid line: model, marks: measurements.

Fig. 7. Parametric levels measured at 20 m (m� = 40 kHz with m1 = 80 kHz,
m2 = 120 kHz) (vertical unit is scaled as parametric source levels) versus the relative
phasing u of the primary signals. Red curve: primary source level is maximal
(237 dB re 1lParms @ 1 m); Green curve: primary source level is �5 dB below max
level. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
although not negligible. Note also that this phenomenon can also
induce unexpected fading oscillations. For example, considering
primary frequencies at m1 = 90 kHz and m2 = 130 kHz: the paramet-
ric frequency is still at 40 kHz; because nonlinear propagation cre-
ates waves at all linear combinations of the primary frequencies,
sub-harmonics at frequencies multiple of 10 kHz are also gener-
ated in this case (e.g., with the combination 3 � 90 kHz–2 �
130 kHz). This may induce variations in the parametric efficiency
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with a cyclic recurrence at 10 kHz, i.e., every four parametric peri-
ods. The amplitude of the fading phenomenon should have the
same order of magnitude as in the experimental example, i.e.,
about 2 dB. Hence, the primary signals used to drive a parametric
transmitter with a small parametric ratio must be designed care-
fully to maximize the conversion efficiency and to avoid unwanted
fluctuations.

4. Conclusion

The spatial Fourier formalism is a convenient tool to model the
paraxial parametric transmission in the frame of nonlinear interac-
tions between finite-amplitude waves. The secondary field can be
obtained at finite distances, with versatile projector geometries.
The numerical implementation of the theoretical model is manage-
able with reasonable efforts.

The validity of the model could not be a priori taken for granted
with geometry that involves very dissymmetric apertures, e.g., lin-
ear arrays. However, the confrontation with experimental data
shows good agreements.

The most questionable hypothesis in this finite-amplitude mod-
el is the separability of the distance and spatial frequencies that Eq.
(7) involves. More specifically, the pending question is the limit of
validity and the consistency of the 1-D model in estimating the ex-
tra-attenuation. The presented results shows that this limit is not
reached with the primary source levels used in this application,
which are already quite large.

An experimental evidence of the dependency of the parametric
efficiency on the phasing of the primary signals is given. It shows
that the phenomenon must not be neglected in applications calling
for small parametric ratios, as needed to obtain a large parametric
conversion efficiency.

At the present time, the model is being implemented to simu-
late the parametric radiation obtained with a Mills cross antenna
(each arm transmits one of the primary frequency – the parametric
beam can be steered by steering each primary beam). A future
prospect is also to test this model in aerial applications for
which the orders of magnitude are different than in underwater
applications.
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