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Abstract. When isobath maps of the seafloor are constructed 
with a bathymetric sidescan sonar system the position of each 
sounding is derived from estimates of range and elevation. The 
location of each pixel forming the acoustic backscatter image is 
calculated from the same estimates. The accuracy of the result- 
ing maps depends on the acoustic array geometry, on the 
performances of the acoustic signal processing, and on knowl- 
edge of other parameters including: the platform's navigation, 
the sonar transducer's attitude, and the sound rays' trajectory 
between the sonar and the seafloor. The relative importance of 
these factors in the estimation of target location is assesed. The 
effects of the platform motions (e.g. roll, pitch, yaw, sway, surge 
and heave) and of the uncertainties in the elevation angle 
measurements are analyzed in detail. The variances associated 
with the representation (orientation and depth) of a plane, 
rectangular patch of the seafloor are evaluated, depending on the 
geometry of the patch. The inverse problem is addressed. Its 
solution gives the lateral dimensions of the spatial filter that 
must be applied to the bathymetric data to obtain specified 
accuracies of the slopes and depths. The uncertainty in the 
estimate of elevation angle, mostly due to the acoustic noise, is 
found to bring the main error contribution in across-track slope 
estimates. It can also be critical for along-track slope estimates, 
overshadowing error contributions due to the platform's atti- 
tude. Numerical examples are presented. 

Introduction 

Sound waves are used to map and image the sea- 
floor because of their radiative properties in water. 
Such remote sensing operations are usually per- 
formed with side-looking sonar systems, or with 
multibeam echo-sounders [1]. Either class of sonar 
systems can be used to provide bathymetry and 
sidescanned imagery of the seafloor [2]. 
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In this paper, we investigate the theoretical accur- 
acy and resolution of  the spatial representation of 
the seafloor when derived by a bathymetric sidescan 
sonar system. In such systems, the location of reflec- 
tors on the seafloor is derived from dynamic differ- 
ential phase measurements of  echoes received at the 
transducer rows. The phase differences are con- 
verted to elevation angles as a function of  time [3], 
yielding depths and horizontal distances across- 
track. The magnitude and probable cause of uncer- 
tainties in the phase measurements have been re- 
ported elsewhere [4-5]. Here we are concerned with 
the resulting errors in locating targets. In addition to 
elevation angle errors, we take into account the 
sonar geometry, the location of  the platform and its 
attitude at times of transmission and reception. 
Refraction effects provide additional range and an- 
gle errors that have been analyzed elsewhere [6]. 
Here, straight ray paths are assumed without loss of  
generality as this correction can be applied indepen- 
dently of  the present study. 

For sidescanned acoustic images of  the seafloor, 
methods have been deviseds to correct pixel posi- 
tion for certain effects of  varying platform attitude 
[7]. Here, we are interested in the qualitative and 
quantitative assessment of the image distortions. 
The classical flat bot tom assumption is not used. 
Instead, backscatter values are mapped con- 
sistently with the co-registered bathymetric data. 

Based on a few non-restrictive hypotheses, a set of 
equations is derived that serve two purposes: 1) as- 
suming an exact, deterministic knowledge of  the 
attitude parameters, the target location is calculated; 
2) the effect of the sonar's attitude on the accuracy of 
the target's location is analyzed; and 3)from these 
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error estimates, an assessment of the quality of the 
resulting seafloor mapping is made, giving practical 
indications on relevant data processing. 

In Section 1, the geometry of the problem and the 
location of a target are formulated in terms of 
solutions derived up to the second order. Section 2 
contains an error analysis applied to these formulae 
for each of the potential error sources. In Section 3, 
the analysis is expanded from the description of a 
single target's location to the statistical representation 
of  a plane rectangular area of unknown orientation. 
Using additional hypotheses, the inverse problem is 
solved, providing a recipe for computing the theoreti- 
cal resolution ofa bathymetric sidescan sonar system. 
Numerical examples are given using realistic parame- 
ters that apply to the SeaMARC II system. To keep the 
text more readable, most of  the derivations are given 
in the Appendices. 

Notations 

Most notations used in this text are summarized 
below, with the exception of variables only defined 
for intermediate steps. For the sake of clarity, the 
variables are introduced again when first encoun- 
tered in the text. 

The standard deviation of a variable, x, is denoted 
by the same letter as the variable, but with a tilde (2). 

Platform: 
P(l, m, m) location of the platform at transmit 
Q(u, v, w) location of the platform at receive 
J mid-point of  segment PQ 
i , j ,  k translation of the platform between 

transmit and receive (PQ) 
at, aR, a yaw at transmit, at receive, and 

averaged 
fir, fiR, fl pitch at transmit, at receive, and 

averaged 
# roll at receive 

approximate common value of ~,/~ 
and fi, when applicable 

(&,/~, fi refer to variations between pings) 

Target: 
2s round-trip slant range of a target 

measured time delay between ping 
transmission and echo reception 
measured elevation angle (relative to 
the fish's attitude) 
error in the measured elevation angle 

~,=O+u+¢ 

Plane patch on the seafloor: 
Geometry 

x0, Y0, z0 location of the center (relative to the 
platform's location) 

Px, Py along- and across-track dimensions 
0x, 0y along- and across-track slopes 

Sampling 
Ax along-track step between pings 
Ay across-track sampling (bathymetry) 

Estimates 
~ ,  (y estimates of the slopes 0~ and Oy 
h estimate of the fish's altitude above the 

center of  the patch (z0) 

1. Target Location 

1.1. GEOMETRY OF THE PROBLEM 

A reference flame in which the various attitude 
components are defined is provided in Figure 1. 
The cartesian coordinate system is oriented so that 
.~ represents the direction of travel, ~ the athwart- 
ship axis, and ~ the depth. 

Depending on the application, all the parameters 
introduced below are assumed to be deterministic 
(their values are known perfectly) unless confi- 
dence limits are available to constrain their esti- 
mates. In the limit, parameters are set to zero to 
establish a reference estimate. 

Let P(l, m, n) denote the location of the fish at 
transmit time, and Qdu, v, w) its position when 
receiving an echo at some time, z, after transmis- 
sion. P is unique for each ping, but Q, is an instan- 
taneous location that varies with time as the echo 

signals are received. Consequently, a vector PQ is 
associated with each instantaneous return, and its 
components i, j ,  k represent respectively the prin- 
cipal forward translation of the fish occasionally 
altered by surge, the lateral shift (sway) potentially 
incurred by drift or yaw, and the vertical compo- 
nent due to heave or pitch. 

P Q = ( i = u - l , j = v - m , k = w - n ) .  (1) 

It is also convenient to define J as the midpoint of  
segment PQ: 

PJ -- JQ = PQ/2. (2) 

The rotation angles are defined as follows: Roll is a 
rotation about the fore-aft axis of the array, pitch is 
the vertical angle between this axis and the horizon- 
tal plane, and yaw is the horizontal angular devia- 
tion of this axis from the mean course of the fish. 
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Fig 1. Geometry of the problem. (a) Fish at transmit and receive, (b) Elevation angle measurement. Note that in this figure C~r, c~ R, and 
fir are positive, whereas fir, O, #, and ~ = O + ~ are negative. 

Orientations of these angles are described in Figure 
1. At transmit t ime (point P), we are only con- 
cerned with yaw (~r) and pitch (fir). Roll at trans- 
mit  is not a factor in the estimation of the target 
location, it only affects the magnitude of the return 
due to the rotation of the broad athwartship beam 
pattern (typically > 70 ° wide at the half power 
points). However, roll is critical on receive as it is 
directly linked to the elevation angle estimation. 
Yaw (~R), pitch (fiR) and roll (p) are therefore used 
on receive (Q). 

Using these rotation angles, the orientation of 
the main axis of the transducer rows is represented 
by the unit  vectors 7" at P and/}  at Q: 

- c o s f l r  cos  a r l  

= cos fir s i n a r [  

- sin fir / 

(3) 

I] c°s' q 
R=M~(aR)My(flR) 10 = [ c o s &  sinc~R[ 

0 L - s i n  & J 

(4) 

where the rotation matrices My(f) and M~(a), re- 
spectively describing pitch and yaw, are expressed 
in Eq. (B3) in the appendices. 

The main steps necessary to obtain the results 
are presented below. However, for a complete 
mathematical  derivation, the hypotheses and inter- 
mediate steps referenced in the main text are given 
in the Appendix. 

Assuming that the echo received at Q comes 
from an ideal point scatterer on the seafloor, 
M(x, y, z), the range and angle estimation problem 
is predicated on the conditions listed below (the 
relevant hypotheses are summarized in Appendix 
A). 
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(1) The elevation angle ~u is derived from the 
angle of a~ival, ~, measured at Q in the plane 
normal  to R (Figure lb), with some error, ~, while 
the fish has rolled an angle/z: 

~ , = ~ + ~ + ~ .  (5) 

Hence, the target M belongs to the plane (Q, A_~ 
obtained after rotating a vertical plane around R 
with an angle ~u: 

QM.~] = 0  (6) 

(Appendix B-I). 
(2) The roundtrip range to M, 2s, is derived from 

the measured time delay, r, and a sound velocity, c, 
integrated over the water column: 

2s = IPM[ + IMQI = cz. (7) 

This equation implies that for a fixed value of s, the 
locus of point  M is an ellipsoid with focus points P 
and Q, and major axis 2s. Its eccentricity is close to 
unity as the distance PQ traveled between transmit 
and receive is much smaller than the range to the 
target, J M  or s (Hypothesis I in Appendix A). 
Therefore, the athwartship sector of this surface is 
approximated by the inner tangent sphere of equa- 
tion: 

j m  2 = s 2 _ (pQ/2) 2, (8) 

,-7, 

\ 
\ 
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/ 
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/ 
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/ 

Fig. 2. Farfield maxima of acoustic beam patterns 
(Fir): at transmit ~T±Hr):  
(HR): at receive (R±HR); 
(H~t): beam pattern product. 

which is exact up to the third order (Appendix 
B-II). 

(3) The point Mbelongs  to the domain of maxi- 
mal insonification defined by the product of trans- 
mit  and receive beam directivities. With a sidescan 
sonar system, both beam patterns are usually iden- 
tical. The sonar platforms are designed to be stable 
enough for the transmit and receive beams to over- 
lap properly (Hypothesis II in Appendix A) so that 
the farfield crossproduct area of maximal insonifi- 
cation can be approximated by the median plane, 
(HM) (Figure 2): 

(/~ + 7 " ) . f M ~  0 (9) 

(Appendix B-III). 

1.2. SOLUTIONS 

Second Order Solution 
The location of the target M can be found by 
solving the set of simplified Eqs. (6, 8, 9), which 
amounts  to finding the intersection of two planes 
and a sphere. Calculations are carried to the second 
order and are detailed in Appendix B-IV. For the 
sake of clarity, terms involving elevation, ~,, are 
often kept in the trigonometric form, although it 
must  be remembered that cos V and sin ~t stand 
respectively for: 

c o s v =  cos0 - (B + ~)sin¢ -- ½(B + ~)2cos~, (10) 

and 

sin~u = s i n e +  (/t + ( ) c o s ~ -  ½(B + ~)2sin~. (11) 

The x, y, z coordinates of M are then given by: 

x = l + ½i + s(flcos~ + asin¢),  

(first order relation) (12) 
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1 + cos2O 
y = m  - s s in~  + j  2 

,8 sin ~ '~ cos + 

cos 0 
T [i(flsin0 - c~cos0) + ksin0], 

(13) 

d,  

,1/2 (.g[ +~'1 

z = n + scos~u + k 1 + sin20 - sfl2cOos 
2 z 

sinO 
+ ~ [i(flsinO - acosO) +jcosO],  

(14) 

where a and fl denote respectively, the average yaw 
and pitch: 

ar + c~R fir + fir 
a and fl (15) 

2 2 

In Eqs. (12-14), terms are displayed in increasing 
order from left to right. First order terms include i, 
and any products of s with o~, fl, #, or ~. Second 
order terms are j ,  k, and products such as (a, fl, #, 
¢)i or (a 2, afl)s. 

-3, 

~ z  

No Drift 
The second order results of Eqs. (12-14) are simpli- 
fied further if one assumes that there is no drift. 
This condition entails that the platform's heading 
is always tangent to the trajectory. Recalling the 
assumption that attitude angles vary slowly in the 
time frame of the signal reception, it follows that j 
and k are related to i through the average angles o~ 
and b (Eq. 15) according to: 

j = a i  and k = - f l i .  (16) 

As a result, the number of  independent variables 
that must be taken into account in the set (i ,j ,  k, a, 
fl), is reduced from five to three. Eq. (12) remains 
unchanged but Eqs. (13-14) are further simplifed, 
so that the coordinates of point Mare  now given by: 

x = l + ½i + s(flcos~ + o~sin0), (17) 

fl s in0] y = m - - s s i n ~ t + ½ j + s a  c o s 0 + a - - ~ - j ,  (18) 

z = n + scos~u + ½k + sfl 2 cos0 (19) 
2 

Although more than three parameters appear in 
these three equations, they are written consistently 
as no more than three independent parameters are 
used in each of  them. 

z M 

Y 

Fig. 3. Approximate location of the target M with respect to 
attitude angles c~, fl, /~, elevation angle 0, and error in the 
elevation measurement ~. M 0 is the "zero-order" location. Con- 
sidering the angle orientations defined in Figure 1, a and 0 are 

negative in this figure. 

First Order Solution 
Finally, the first order solution with or without drift 
is given by: 

x = x0 + ½i + s(flcos~ + o~sin0), (20) 

Y = Y0 - s(# + ~)cosG (21) 

z = z0 - s ~  + ~)sinG (22) 

with the zero order components: 

x0 = l, Y0 = m - ss inG z0 = n + scos0. (23) 

The geometrical interpretation of  these equations 
is quite intuitive, as shown on Figure 3. 

In most applications, the zero order set of  Eq. 
(23) is used, under the basic assumptions made 
when mapping bathymetric or acoustic backscatter 
amplitude data~ (1)atti tude variations are :neglig- 
ible (T = R = x, # = 0), (2) the translation of  the 
sonar between transmission and reception is ig- 
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nored (P = Q), and (3) the elevation angle is known 
exactly (~ = 0). 

2. Error Analysis 

When all the parameters are known exactly, the 
center of  the beam footprint is found through one 
of  the set of  Eqs. (12-14), (17-19), (20-22) or (23), 
depending on the level of  approximation specified. 
When an uncertainty is associated with these pa- 
rameters, the same equations can be used straight- 
forwardly to derive the resulting errors on x, y, and 
z, as long as the error on any parameter remains 
consistent with the initial assumptions (e.g. di is a 
first order length). 

In this Section, the effects of  errors associated 
with each parameter are analyzed in detail. To this 
end, and without any loss of generality, it is conve- 
nient to define dMas the error on the target location 
given by Eq. (23). 

2.1. EFFECTS OF SLANT RANGE ERRORS 

- - )  
y.--~ 

5s 

J 

z 

Fig. 4. As the reflector M lies in a plane which is quasi perpend- 
icular to ~, the error in slant range ds is directly reported in the 

(~, 3) plane. 

The slant range, s, is derived from the product of  a 
time delay, z, by an average sound velocity, c (Eq. 
7), so the accuracy with which these two values are 
known dictates the accuracy on s. The average 
sound velocity c is calculated by integrating local 
values over the water column, and the accuracy of  
this process is usually better than a few percents. 
Uncertainties associated with the time delay are 
dictated by the auto-correlation length of  the trans- 
mitted pulse, which is usually much smaller than 
the time delay itself (a ratio of  1/1000 is typical). 

The error associated with terms involving slant 
range is an order of  magnitude less than the order of 
the terms themselves. Hence, to evaluate inaccura- 
cies in the target location due to ds, it is sufficient to 
consider terms of the zeroth order for dx and terms 
up to the first order for dy and dz. Also, because x0 is 
independent o f s  (Eq. 23), errors in slant range have 
no effect on the along-track mapping. Likewise, the 
first order expressions o fy  (Eq. 21) and z (Eq. 22) are 
linear is s, so that slant range errors are directly 
reported in the 03, 3) plane (Figure 4). However, the 
relative error ds/s is likely to be fairly systematic 
over a given homogeneous portion of  survey. As a 
consequence, slant range errors will typically intro- 
duce the same amount of  across-track scale error in 
backscatter images and bathymetry mapping, and a 
multiplicafive distortion in the same proportion will 
also affect the bathymetric data. 

The error in position relative to the position of 
the fish at transmit can then be summarized by: 

6sy 6sZ 6s 
dsX = 0, and . . . .  (24) 

y - m  z - n  s 

~s 6c ~z 
with + 

S C 

2.2. EFFECTS OF ERRORS IN SONAR LOCATION 

Errors associated with sonar location involve the 
fish's position (P) at the instant of  transmission, 
and its translation to the instantaneous reception 
points (Q0. Without loss of  generality, it can be 
assumed that the reference point, O, is the est- 

imated location of  P so that OP represents the 
error in position at transmission time: 

deM = Off i.e. de(x, y, z) = (1, m,  n). (25) 

Terms related to the translation of  the fish in Eqs. 
(I 3-14) indicate that the second order approxima- 
tions o f y  and z are linear with respect to i, j and k, 
so that it is possible to use this set of  general 
equations to derive directly: 

dpex = ½di, (26) 
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~Qy -- 1 + cos2~ ~j 
2 

(27) 

f - ~ [ f i ( f l s i n ~  - c~cos0) + fksin ~], + 

1 + sin2~b fik 
2 

(28) 

sinO 
+ - ~  [ai(flsin0 - acos0) + fjcos0]. 

When there is no drift (Eq. 16), Eqs. (17-19) give 
the very simple result: 

c~eo(x, y, z) = ½(fi, fj ,  fk)  i.e. oeQM P0/2.  (29) 

This error includes two parts: the forward motion 
of  the fish (in essence, fi); and small fluctuations 
(sway, heave and surge) typical for a towed instru- 
ment (respectively, fj ,  fk  and a second order part of 
di). The overall target position error due to uncer- 
tainties in the fish's location is obtained by combin- 
ing Eqs. (25) and (29), yielding the vector OJ such 
that: 

f ie,oM= ~ + PQ/2 = ~ .  (30) 

If  the estimated fish track departs from its actual 
trajectory, the difference is directly embedded in 
the resulting maps. The first contribution (Eq. 25) 
is linked to the navigation and the difficulty of 
estimating the fish's position relative to the towing 
vessel. It reflects slowly changing large offsets, com- 
pared to the small but faster variations recorded in 
the second order part of  Eq. (29). The main contri- 
bution of this equation reflects the global distortion 
of  the backscatter images or of  the bathymetry 
which occurs in the along-track direction whenever 
the fish's translation is not taken into account. 

A seemingly paradoxical result appears in Eqs. 
(29-30): heave has no effect on the athwartship 
mapping (~zv = 0). Two observtions can be made: 
1) This result is derived by assuming that the 
instantaneous direction of the fish remains tangent 
to its trajectory. Compared with Eq. (27), here the 
pitch angle that generates a vertical displacement 
compensates exactly the lateral deviation (c~y) that 
would otherwise occur. 2) The offset n = OPz biases 
the bathymetry through the error on the fish's tow 
depth. However, in the formalism presented here, 
the backscatter mapping is based on the assumed 
altitude of the fish, which is independent from this 
bias. By comparison, such an offset has a dramatic 

influence on pixel location when the backscatter 
mapping is based on a flat bottom assumption, or 
on an independent bathymetry data base. As a 
consequence, a backscatter image whose pixel loca- 
tion is directly processed through the whole set of  
information collected by the bathymetric sidescan 
sonar system is likely to be more accurate than 
using any other pixel relocation scheme. 

2.3. EF F ECTS  OF UNCERTAINTIES IN ROLL, PITCH, 

YAW, AND ELEVATION 

In the set of Eqs. (12-14), elevation perturbations 
(~+~) have no effect on x but affect first order 
terms in y and z (through Eqs. 10-11). Hence, roll 
and elevation measurements are the leading causes 
of error on ( y - m )  and (z -n) .  

=0, (31) 

roy = - scosOf~, (32) 

with 

~0z = - s sin ~f 0, 

f ~  = f#  + f~. (34) 

Conversely, there is no first order error due to pitch 
or yaw on y and z, whereas for the along-track 
component x, the error is given by: 

f~,~x = s s i n ~  + scos~ffl. (35) 

Compared to the zero-order mapping of a single 
ping (Eq. 23), the distortions introduced by these 
angles are clearly viewed by noticing that Eqs. (32- 
35) yield the following approximations: 

fix ~ (z - n ) f~  - (y - m ) f a ,  (36) 

~y ~ - (z - n)(fCt + f~), (37) 

fz  ~ (y - m)(8# + f~). (38) 

The first two equations describe how the attitude of 
the platform affects the mapping of back,;catter 
data or bathymetry data, whereas Eq. (38) concerns 
only the latter. As mentioned at the end of Section 
1.2, in a system such as SeaMARC II, data are 
mapped without taking into account the variations 
of the attitude angles during a ping cycle. The errors 
c~a, ffl, and &z take the values of the attitude angles 
themselves. In addition, the errors are highly corre- 
lated for contiguous samples within the same ping 
because the sampling interval is much shorter than 
the time scale of the dynamics of  the vehicle mo- 
tion. If the attitude parameters change sufficiently 
slowly, on a time scale commensurate with the 
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Fig. 5. For a horizontal bottom profile (D), each point M is 
transformed into M '  by rotation around .~ with the small angle 
/z. For points such that the angle ¢ is not too small, the locus of 
M '  can be approximated by the straight line (D') which forms an 

angle # with (D). 

duration of echo reception from the seafloor for a 
given ping, in the limit the attitude variations can 
be considered negligible so that the corresponding 
errors change only from one ping to the next. 

Looking at this idealized figure for a single raster 
line, Eq. (35) shows that the along-track shifts result 
from two effects that can be interpreted as (Figure 
3): 1) A forward or backward shift caused by pitch, 
whose cross-track variations are dictated by the 
corresponding bathymetric profile. Within a homo- 
geneous portion of survey, this translation can be 
approximated as an along-track offset. As the along- 
track width of the footprint of  the beam pattern 
increases across-track from nadir out, the relative 
effect of  pitch prevails near nadir. 2) Yaw causes a 
global rotation of each raster line, independent of 
the relief. Hence, unlike pitch, the effect of  yaw is 
negligible in the central part of  the swath. 

Both Eqs. (37-38) are a sum of two terms whose 
effects differ because of their behavior between 
adjacent samples. In the case of roll, if  we consider 
a segment of raster line whose time span is signifi- 
cantly shorter than the roll period, Eq. (37) implies 
that roll contributes to the global lateral translation 
of  this segment of bathymetric profile or sidescan 
raster line when the variance of the profile is not too 
large. Accordingly, Eq. (38) implies that roll intro- 
duces a bias in the bathymetry, independent of  the 
local relief, by adding a cross-track slope # (Figure 
5). Depending on the extent of the roll period, 
the validity of the approximation may be ques- 
tionable over a whole raster line. However, the 

analysis developed in Section 3 concerns rectangu- 
lar patches of the seafloor whose width is only a 
fraction of the total swath width, so that the above 
approximation applies. 

Conversely, the error d~ can be considered as 
random, without any coherence from one elevation 
measurement to another. The magnitude of this 
error is mostly dictated by the signal-to-noise ratio 
of  the seafloor echoes. For each side, bathymetric 
samples are derived within an athwartship sector 
approximately bound in elevation between 10 °- 15 ° 
and 55°-60 ° . The lower limit is meant to eliminate 
the near-nadir specular reflections that cannot pro- 
vide useful phase measurements. The upper limit 
corresponds to the onset of  the first bottom multi- 
ple echo which is often strong enough to cause 
dramatic interference in the phase measurement. 
Hence, within this sector, the relative variations of 
slant range remain smaller than 2. In addition, the 
arrays are mounted on the platform with a tilt angle 
(e.g. about 45 ° for SeaMARC II) so that the direc- 
tivity in the across-track plane compensates par- 
tially for the slant range variations. Consequently, 
the deviation of  the elevation error, ~, can be ap- 
proximated by a constant when considering a set of  
bathymetric samples gathered over a homogeneous 
area. This approximation is in agreement with the 
variances that are observed when processing raw 
data recorded with the SeaMARC II system [4]. It 
also applies to the small rectangular patches of 
seafloor that are considered in Section 3. 

2.4.  SPATIAL SAMPLING 

Regardless of the accuracy of the measurements, 
the quality of  the seafloor representation derived 
from data collected with a bathymetric sidescan 
sonar system depends also on the spatial sampling 
process. This process is usually anisotropic. Due to 
the finite acoustic beamwidth (03a~) in the along- 
track dimension, and the short horizontal projec- 
tion of the pulse length in the cross-track dimension 
(dy), each seafloor echo received results from the 
signals backscattered by a narrow strip of length dx 
along-track. Considering a homogeneous portion of 
survey for which the average altitude of the fish is 
denoted h = z - n ,  the length of the footprint is 
simply estimated by: 

dx , '~  S03d B "~  (h 2 -4- y2)1/203dB" (39) 

This echo integration over each strip reduces the 
apparent spatial bandwidth of the along-track relief 
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to the approximate spatial frequency: 

Vma x ~ (2dx) -1 (40) 

Hence, the speed of the ship and the transmission 
period are adjusted according to the aperture of the 
transducer array (03ds) and the average altitude of 
the fish above the surveyed area (h), so as to 
provide an along-track step a x  with minimal spa- 
tial aliasing: 

dx  >_Ax (>_i).  (41) 

It is important to note that the along-track resolu- 
tion is bound by the spatial frequency Vma~ given in 
Eq. (40), which may be much lower than the opti- 
mistic value (2ax) -~. 

The cross-track sampling of the backscatter data 
is approximated by dy. However, bathymetry data 
usually require longer spatial integration intervals 
across-track (Ay). A lower limit on this interval is 
dictated by the angular resolution, ~, of  the eleva- 
tion measurements: 

Ay ~ h~. (42) 

This interval also implies that the data will only 
contain components of the relief with cross-track 
spatial frequency up to (2Ay)-1. 

3. Representation of a Plane, Rectangular Area 

3.1. THEORETICAL DEVELOPMENT 

As indicated in Section 2, the uncertainty asso- 
ciated with the sonar's attitude and position during 
measurements has a direct impact on bathymetric 
accuracy and on proper positioning of backscatter 
pixels. In this section, the analysis is expanded 
from errors in the location of a single target to a 
theoretical assessment of the sonar system's ability 
to reproduce faithfully the spatial characteristics of 
the terrain surveyed. One way to approach this 
problem is to determine the size of a patch of 
seafloor whose depth and slopes can be properly 
represented with the system. 

The analysis is restricted to small-scale fluctua- 
tions. Systematic distortions due to slant range 
errors and the along-track progression of the fish 
are not addressed here. Variations occurring very 
slowly from one ping to another due to navigation 
errors, as well as the remaining second order fluc- 
tuations in the position of the fish, are also neg- 
lected. Consequently, only first order effects of  
uncertainties in roll, pitch, yaw, and elevation are 

considered, through Eqs. (36-38). The analysis 
builds on the first order approximations derived in 
Section 1.2, but i is discarded in Eq. (20), and the 
origin of coordinate O is reset, for convenience, at 
the initial fish position P (l = m = n = O) in Eqs. 
(20-23). 

We consider a sloping, rectangular, plane area 
centered at point H(xo,  Yo, )Co) whose equation is: 

0 
with (43) 

= (sin 0xcos 0y, - sin 0ycos 0x, cos 0xCOS Oy), 

where 0~ and Oy respectively stand for along- and 
across-track slopes. We assume that this patch has 
been surveyed with (2L + 1) pings consisting of 
(2 W + 1) across-track samples each. Within this 
patch of seafloor, Zp, u denotes the depth of the qth 
across-track bathymetric sample from the p th ping, 
deduced from measurements of pairs (~, S)p, q, i.e. 
z;, q = sp, q cos ~p, q. The representation of the relief is 
built with points (xp, yq, Z;,q), by mapping the as- 
sumed depth values z;. q at the theoretical locations 
(xp, yq) in the horizontal plane: 

Xp = Xo ÷ p a x  ( - L <_ p < L) ,  (44) 

yq = y0 + qzXy ( - w <_ q <_ w ) .  (45) 

However, due to the fish movements and the noise 
in the elevation measurements, the processed 
echoes come from actual locations on the seafloor 
centered at points M ( x ;  + fix, yq + fly, zp, q + fiz). 
Consequently, the mapped depth values are de- 
duced by solving the plane Eq. (43) so that, using 
Eqs. (44-45), it gives: 

zp, q = z0 - ( p a x  + fix) tan 0~ 

+ (qAy  + fly) tan 0y - 6z (46) 

with the intervals fix, fly and Oz as defined in Eqs. 
(36-38). 

Given the set {Zp, q) over the rectangular array, 
we are interested in the statistical characteristics of 
the representation of the seafloor, i.e. the estimates 
of the slopes ((x and (y) and of the depth h at the 
center of  the patch, as well as their variances ((~, 
~ ,  and/~2). The uncertainty associated with each 
sample, M, is treated as noise made up of a combin- 
ation of uncertainties in roll, pitch, yaw and eleva- 
tion. However, the attitude variations are con- 
sidered quasi static for the time interval during 
which seafloor echoes are received. Therefore, for 
ping number p, the attitude angles take the values 
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%, tip and lip. As ~ accounts for the noise in the 
elevation measurement itself, it varies indepen- 
dently for each sample q within a ping: ~ = ~p, q. All 
these quantities are assumed to be Gaussian ran- 
dom variables with standard deviations &, ]?, fi and 
~, respectively. As systematic distortions are not 
addressed here, they are assumed also to be zero 
mean. 

A two-dimensional linear regression is per- 
formed on the set {zp, q} to provide the estimates ~x, 
~y, and h. They are obtained by minimizing the 
mean square distance between the estimated plane 
and the samples: 

E y~D2,o 
P q 

with 

minimal! 

(47) 

Dp, q --- - p a x  tan ~x + qAy tan ~y + h - zp, q. 

This classical least squares problem requires to 
solve: 

Y, EDp, q=O,Y,Y~Dp, qp----O, 2Y,  Dp, qq=O. (48) 
P q P q P q 

Using the resultant estimates, the corresponding 
variances are calculated. Owing to the Gaussian 
statistics assumption, the calculations are carried 
out using linearity of the variance for independent 
variables. Details are found in Appendix C, with 
explicit results in Eqs. (C12, C14-C15). However, 
much simpler results can be obtained if the follow- 
ing additional conditions, owing to the specific 
situation ofsidescan sonar systems, are considered: 

Condition 1: Qualifying the ability of a bathy- 
metric sidescan sonar system to give a meaningful 
representation of the seafloor requires that the size 
of  the test patches (& along-track by py across-track) 
remains reasonable compared to the whole geome- 
try of the setup. In other words, we are only inter- 
ested in finding statistics over area limited to: 

Px = (2L + I)Ax ~< z0. 

and (49) 

py = ( 2 W +  1)Ay <~ z0. 

Condition 2: As implied by the current capabili- 
ties of  shallow-towed bathymetric side-looking 
sonar systems, valid bathymetric samples are ob- 
tained on each side over relatively narrow athwart- 
ships angular sectors (e.g. usually smaller than the 
interval ]10°-60°[). Hence, no restrictions are im- 
posed when considering small rectangular patches 
of  the mapped seafloor such that the coordinates of 

their center, Y0 and z0, have the same order of 
magnitude. In addition, the technique based on 
differential phase measurements is not appropriate 
for deriving bathymetric samples from specular 
echoes. Therefore the analysis applies only to sea- 
floor patches whose orientation does not yield spe- 
cular returns. 

Condition 3: This study is limited to seafloors 
yielding bathymetries without very steep slopes: 
Doing so, the tangents of these slopes cannot be 
much larger than unity. There are several reasons 
why this restriction will not inhibit the generality of 
the results: First, this condition is consistent with 
Condition 2 (z0 -~ Y0) for the across-track slopes, if 
one notices that a sidescan sonar cannot properly 
map areas that either lie in an acoustic shadow 
(Y0 tan 0y > z0) or generate multiple synchronous 
echoes (z0 tan 0y _ < -  Y0). In addition, the spatial 
sampling inherent to the sonar system (Section 2- 
4) has the effect of  smoothing the representation of 
the relief. Another smoothing effect occurs because 
of the size of  the rectangular patches used in the 
least squares fitting processes applied to build the 
bathymetry. 

Condition 4: Generally, amplitudes of the fish 
angular movements are similar in every direction, 
i.e. a and/)  have the same order of magnitude. In 
addition, we assume in this paper that roll (fi) has 
also the same order of magnitude. However, there 
is no such relation for the noise in the measure- 
ments of the elevation angle (~), whose average 
amplitude is usually larger than the angular varia- 
tions in attitude. 

The solutions under these conditions are given 
in Appendix C (Eqs. C16-C 18). Several particular 
cases of interest can be derived. 

Single datum 
The variance of  a single bathymetric datum can be 
directly calculated from Eq. (C 18) with L = W= O: 

/~2 = (&2yo2 +/~2z02)tan2 0x 

+ (fiz + ~2)(y ° + Zo tan Oy) z. (50) 

Following the restriction introduced by Condition 
2, the validity of the contribution of elevation 
uncertainties (fi and ~) is limited to seafloor patches 
that do not yield specular reflections, i.e. such that 
the term (Y0 + z0 tan 0y) is not very small when 0x is 
very small. This restriction applies also for the 
results that follow. 

Now, looking at single lines or rectangular areas, 
further simplifications apply when there are at least 
5 samples (N >_ 2) along the given direction, as the 



SPATIAL REPRESENTATION WITH BATHYMETRIC SIDESCAN SONARS 417 

ratio (N + 1/2)2N-~(N + 1) -~ is then very close to 
unity. Eqs. (C16-C18) give finally in the three 
following cases: 

Part of a single ping 
Wher~ L = 0 the expected accuracy in mapping part 
of an across-track profile is given by: 

~2 ~ (aZcosZ0y +/~2sinZ0;)tanZ0xcosZ0y + fi2 
(51) 

-~ 92 12Ay (Y0COS0y + zosinOy)Zcos2Oy, 

/~2 ,~ (&Zyg + DZzg)tan20x 
(52) 

+ (fi2+92~)(Yo+zotanOy)2. 

Along-track segment 
Likewise, when W= O, results for an along-track 
line are: 

^ AX "~2 2 52 ~ 12 cos 2 O~-j. [to~ Yo + [?2zg)sin20x 

(53) 
+ ~ + 92)(y0 + Zo tan 0y)2cos 20x], 

/~2 ~ Ax [(a 2y02 +/~2zg)tan2 0, 
Px 

(54) 
+ (fi2 + 92)(y0 + z0 tan0y)2]. 

Rectangular patch 
Now, we report the case of a rectangular patch 
which is relevant to our initial question. The ap- 
proximated variances over slopes are given by: 

52x ~12 cos2 0X ~xx [(&2yZ + fl2z~)sin2 0x 

(55) 

+ (fi2+gx~)(Yo+zotan@)2coS20x I, 

52 ,~ Z ~  [(~2COS20y ~- ~2sin2Oy)tan2OxcoS20y 
Px 

(56) 

+ fi2 + 92 12Ay ] (y°cOS0y + Z0 sin0y)2cos2@ , 

whereas the standard deviation over the depth 
offset is simply related to that of the across-track 
slope's through: 

h -  0.3 5xPx. (57) 
COS 2 0 x 

Anticipating on the results deduced later on in 
Appendix D (Eq. D7), we ment ion here that using 
realistic numerical figures, the influence of the atti- 
tude movements  upon the across-track variance is 
very weak so that Eq. (56) can often be reduced to: 

~ ~ 12cos20y~(YoCOSOy + zosinOy)292. (58) 
PxPy 

Hence, for bathymetry built after filtering the data 
in both along- and across-track directions and ac- 
cording to the approximate result in Eq. (58), the 
accuracy on the across-track slopes is mostly dic- 
tated by the noise in the elevation angle measure- 
ments. On the other hand, all the angular variations 
(attitude and noise) contribute to the along-track 
slope error and the depth offset. A simple analysis 
of the previous results leads to the following com- 
ments: 

Variance of the across-track slope (EC. 58j 
The effect of the noise in the elevation measure- 
ment  is maximal for a small grazing angle, i.e. 
with 0y = ½arctan(zo/Yo). It vanishes for patches 
whose cross-track orientation tends to be perpendi- 
cular to the platform-target direction, i.e. for 0y = 
-arctan(yo/zo), except when 0x is very small and 
leads to specular reflections. 

The actual along-track slope has no influence on 
the across-track slope estimate. However, as men- 
t ioned previously, Eq. (58) is not valid in case of 
specular inflection, which may occur only if I 0~ [ is 
very small (e.g. < 5°). 

Variance of the along-track slope (EC. 55j 
The contributions of pitch and yaw are indepen- 
dent of the across-track slopes (0y) and increase 
with the along-track slope to be maximal at 
10xl =45  °. 

The influences of roll and noise are divided by 4 
when the along-track slope varies from 0 ° to 45 °. 
However, the most dramatic changes occur' with 
the across-track slope. When the seafloor patch 
yields specular returns, the influence of these pa- 
rameters is vanishing (regardless of Ox), whereas 
their contribution is maximal if the area is seen at a 
very small grazing angle. 

Depth offset dEC. 57J 
The contributions of pitch and yaw are indepen- 
dent of the across-track slopes (Oy) and increase 
with the along-track slopes. 

The contributions of roll and noise are indepen- 
dent of the along-track slopes (0Q. The behavior of 
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these two parameters with respect to the across- 
track slopes is the same as for the estimated along- 
track slope. 

3.2. INVERSE PROBLEM 

The formulas derived above are useful in cases 
where the degree of confidence of the mapping 
results must be evaluated. The inverse problem is 
of  more practical interest: it can be defined as 
finding the size of the window (Px, PQ that must be 
used to convolve the data in order to produce a 
smoothed bathymetry whose accuracy is quantified 
by a given variance, ~-2, in the estimated slopes. As 
concluded from Eqs. (55-56), the variances in the 
slopes depend on many parameters, and typical 
lengths Px and py must be estimated by using values 
that are representative of the average operating 
conditions. Once the size of the rectangular area 
has been determined, actual limits for the variances 
can be calculated. 

Hence, we choose to set Y0=% because the 
sidescan sonar geometry is such that an angle of 
incidence of 45 ° points roughly to the middle of a 
one-sided cross-track profile (Condition 2 in Sec- 
tion 3.1). Moreover, a common standard deviation, 
~, is assigned for the attitude rotations (Condition 4 
in Section 3.1), so that Eqs. (55-56) are reduced to 
Eqs. (D l -D2)  in Appendix D. 

Ideally, we are looking for results that are valid 
regardless of the shape of the  terrain in the area 
surveyed. In practice, we need to evaluate the 
reference slope variance, ~2, for a typical model of  
the seafloor. However, it will be shown that the 
choice of the seafloor model is not critical. In a first 
model, we just use a flat patch. The dimensions can 
be calculated from: 

P~z~[I+A@~2 ]~5 p2. (59) 

py~l.9[2ixAyzg]'/4~ 1 Aye5 j (60) 

(Appendix D-I.a). 
The first equation is written in a way that em- 

phasizes the order relation px >_py. Eq (60) defines a 
fast converging process whose seed can be deduced 
from either of two limit cases: Whenever the noise 
in the elevation measurement is large enough, the 
factor in brackets that is present in both Eqs. (59) 
and (60) can be approximated by unity. This leads 
to the simple result: 

Px ~Py  "~ 1-9[ZXxAY z 211/4 [~]-1/2 (61) 
' 

whose condition of validity is found by replacing 
this value ofpy in the initial assumption: 

joy I~ 2 [~Z(2)]1/4 [ 94 ]1/2 
Ay ~2 "~ 1.9 b(Ay)3 j [~-~Sj < 1. (62) 

From a practical point of  view, it is important to 
notice that if this condition is verified, the in- 
fluence of the attitude angular movements is negli- 
gible to determine the size of the patch, hence solely 
defined by the noise remaining in the processed 
data (~). Another theoretical limit case applies if 
the orders of magnitude in Eq. (62) are reversed 
(Appendix D-I.b), yielding an alternative seed (Eq. 
D 11) for the general iterative solution (Eq. 60). 

As a second situation, the inverse problem is 
solved for a seafloor model whose across-track and 
along-track slopes lie, with a constant probability, 
between - 45 ° and 45 ° (consistent with Condition 
3 of Section 3.1). Details are found in Appendix 
D-II. The results take now a form very similar to 
the previous case Eqs. (59-60): 

p~ ~ 1.1[1 + 1 . 3 ~  ~ ] p ~ ,  (63) 

p, ]-,,8 
py ~ 1.8[zXxAy z 2] 1/4 -~ 1 + 1.3 ~yy ~5 , (64) 

with the same seeds (Eq. 61 or D l l )  as above. 
Consequently, numerical values derived from both 
seafloor models will be very close. This suggests 
that it is not important to use a more sophisticated 
seafloor model to answer our initial question. 

3.3. APPLICATIONS AND NUMERICAL EXAMPLES 

We are looking now for numerical figures. First, the 
across-track step, Ay, is chosen consistently with 
the level of noise remaining in the processed eleva- 
tion data, i.e.: 

ay  ~ h~. (65) 

With a system such as SeaMARC II, the follow- 
ing numerical values are common: 

c ~ / ) ~ / 2 ~ l / 1 0 0 r a d ,  ~ l / 2 0 r a d ,  

z0 -- 3000 m and zXx ~ 40 m (66) 

(Y0 = z0 and zXy ~ 150m). 

Using these parameters, we are looking for the 
minimal size of a flat patch whose slopes can be 
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determined within an accuracy of 1/10 rad in both 
directions. In that case, one finds that the left side 
of Eq. (62) is about 0.17, so that the approximate 
result given in Eq. (61) applies: 

Px ~Py ~ 640 m. (67) 

The standard deviation for the average altitude 
above the bottom (Eq. 57) lies around 18 m. 

Assuming now that the noise in the elevation 
measurement is lower: 

~ 1/30 rad (Ay~ 150 m), (68) 

the condition given in Eq. (62) is no longer satis- 
fied, and the general solution must be used (Eqs. 
59-60), taking either Eq. (61) or Eq. (D11) to seed 
Eq. (18). In that case, one finds that the minimal 
size of the patch is: 

px>~530m and py~>450m, (69) 

with the standard deviation for the average altitude 
above the bottom lying around 15 m. 

These results give an indication on the size of the 
window that must be used to convolve SeaMARC 
II data in order to obtain a smooth, reliable ba- 
thymetry. On the other hand, they also provide 
information on the resolution of a bathymetric 
sidescan sonar system. For SeaMARC II, with pa- 
rameters defined in Eq. (66), one cannot expect to 
obtain a reliable bathymetric representation of fea- 
tures whose surface extent is significantly smaller 
than the size given in Eq. (67). Values given in Eqs. 
(67, 69) are in agreement with the minimal size of 
the window that are used in practice to filter Sea- 
MARC II data [8, 9]. In addition, rms differences 
between the bathymetry resulting from a nearly 
complete Sea Beam mapping of Fieberling Guyot 
(32.5°N-128°W), and SeaMARC II bathymetry 
collected over this Guyot were found to be less than 
35 m [10]. Considering the difficult mapping geom- 
etry presented to the SeaMARC II system by a 
Guyot rising some 4000 m above the surrounding 
seafloor, and the uncertainties associated with the 
Sea Beam bathymetry taken as a reference, this 
result is compatible with the expected deviation 
calculated above in this section. 

If filtering with a window of appropriate length is 
not performed, the accuracy of the representation 
is degraded. For example, using the solution of the 
direct problem (Eqs. 55-57), with the same param- 
eters as above (Eq. 66), and scanning a flat, hori- 
zontal square patch of 300 mx300 m, the variance 
over the slopes in both directions is large 

(~ ~0.45 rad~25°), resulting in meaningless slope 
estimates. 

Summary and Conclusions 

A theoretical investigation about the spatial charac- 
teristics of seafloor representations obtained by 
means of a bathymetric sidescan sonar system has 
been presented. The effects of the platform's move- 
ments and of the specific polar form (range and 
elevation angles) with which such a system gathers 
data are emphasized. 

First, formulas that allow to calculate the theo- 
retical location of quasi punctual targets have been 
derived. The second order general solution (Eqs. 
10-15) is given for reference and to calc, ulate 
"exact" results, i.e. beyond realistic accuracy. Eqs. 
(17-19) apply when the platform does not drift. 
The more practical, first order solution which is 
common to both cases (with or without drift) is 
written in Eqs. (20-23). The specific influence of 
errors in each parameter on the uncertainty in 
target location is evaluated and discussed. This 
analysis applies for both bathymetry and side- 
scanned acoustic imagery of the seafloor. 

In the next step, general expressions for the 
variance in the slopes and altitude estimates of a 
plane, rectangular patch of seafloor are derived, 
depending on the size and orientation of the sea- 
floor patch, as well as its location with respect to the 
fish (Eqs. 55-58). This allows to solve the inverse 
problem which is central in this study. The solution 
of the inverse problem gives, in practice, an indica- 
tion on the size of the window that must be used to 
filter noise out of the bathmetry. As a conse- 
quence, the solution also provides information 
about the actual horizontal resolution of the final 
isobath map. 

We summarize here the recipe for calculating 
these lengths. If the condition given in Eq. (62) is 
verified, the solution is written in Eq. (61). Other- 
wise, the latter equation provides a seed for the fast 
converging recursive formula given in Eq. (60). The 
across-track length is then used in Eq. (59) for 
finding the along-track length. 

For the sake of clarity, the derivation shown in 
this paper is performed by using the assumption 
that the angular movements of the fish (pitch, yaw, 
roll) have the same average amplitude. However, 
more specific solutions can be easily derived by 
following our method, starting from the solution of 
the direct problem (Eqs. 55-57). 
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The test mentioned previously (Eq. 62) under- 
scores the critical effect of the uncertainty in eleva- 
tion angle. In practice, the accuracy of across-track 
slope estimation depends mostly on this parameter 
(Eq. 58). In certain cases (Eq. 62) it may be also the 
main contribution to along-track errors in slope 
estimates and in average altitude, overshadowing 
uncertainties due to the attitude parameters. As a 
result, areas surveyed with low grazing angles are 
poorly represented. For example, this situation oc- 
curs with SeaMARC II for which the standard 
deviation of the elevation angle error can be as 
large as 1/20 rad. In any case, as expected, the 
bathymetry of a scarp when surveyed along-strike 
will be more accurate on the up-hill than on the 
down-hill side. 
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Appendices 

A. HYPOTHESES 

The following hypotheses are used in the derivation. They 
match normal operating conditions of sidescan sonar systems 
and therefore do not restrict the generality of the results. Ray 
bending has not been taken into account, but a)variations in 
travel time are handled as part of the error analysis (Section 2), 
and b) mislocation due to ray bending can be applied on top of 
the results of our analysis. 

Hypothesis I: 
With a sidescan sonar system, the beam pattern of the trans- 
ducers is a fan that is narrow in the horizontal plane: 

03aB 4 1, (e.g. 03as ~ 1/20 rad) (A1) 

The speed of the survey is chosen so that the distance traveled 
between transmit (P) and receive (Q) is smaller than the along- 
track dimension of the footprint of the beam on the seafloor to 
ensure 100% coverage along-track. Hence: 

P Q / J M  <~ 03d g (A2) 

As a consequence of Eq. (A1), the following conditions are 
always met, even with a deep-towed system: 

PQ 4 J M  ~ i 4 s .  (A3) 

Hypothesis II: 
Again, to ensure proper operating conditions, the fish which 
carries the antenna is designed to provide enough stability so 

that transmit and receive beam patterns overlap sufficiently. 
This requires that the differences (at  - aR) and (fir - fiR) follow 
a condition similar to Eq. (A2): 

[ ar  - aR [ <~ 03d e and [fir - fir [ ~< 03~, (A4) 

so that, from Eq. (A1), there is also: 

] a T - - a R I 4 1  and l i lT - - f l i t [41 .  (A5) 

Hypothesis III: 
The fish is towed along the x-axis, so that it is not restrictive to 
assume that the lateral variations j and k remain much smaller 
than the along-track progression, i: 

j / i  41  and k / i  41 .  (A6) 

Eq. (A6) is usually verified as long as a t ,  fir, aR and fir 41.  
However, if one of these angular conditions of attitude is not 
true, and because of the previous condition (Eq. A5), Eq. (A6) 
may still be verified if the fish is drifting in the corresponding 
plane. For example, with ar  ~ aR ~ 10 ° ( I a T - -  a R  [ 4 1), and a 
strong lateral drift current (same value, i.e. around 10°), the 
variations in true heading remain small and still yield j / i  4 1. 

Hypothesis IV: 
Finally, attitudes angles, as well as elevation error ~, must 
remain small enough to permit developments of trigonometric 
functions up to the second order (sin y ~ t a n T ~ 7  and 
cos ~ ~ 1 - 72/2). This is true as long as: 

2 2 a t ,  fir, a~, fiE,/22, ~24 1. (A7) 

In finding the location of a target M as defined in Section 1.1, a 
direct computation is cumbersome and the level of approxima- 
tion to apply is critical in order to derive pertinent results. With 
s as a reference length, the orders of magnitude are ranked to 
indicate which contributions will be omitted: 

(at, an, fiR, fiT, ~, ~)S and i are considered first order 
lengths; 

(at, an, fiR, fir, #, ~)i, (any angle product 7v)s, j and 
k are second order terms. 

The developments will carried up to the second order, i.e. 
terms like (OIT/2aRS), (aTaRi) or (a j )  will be discarded. Hypothe- 
sies I through IV being verified, rather large attitudes angles are 
still possible. For example, with a roll amplitude/2 of up to 10 °, 
the accuracy over z will remain better than 0.1% (third order 
component in the development of sin/2 is #3/6 = 8.910-4). 

B. STEPS IN THE DERIVATION 

Notation: Following Eq. (2), let X, Y, Z denote the coordinates 
of vector J M  that emphasize the target location with respect to 
the fish's position at mid travel between transmit and receive: 

J M  = (X, Y, Z )  = O M - -  OP -- PQ/2,  (B1) 

in which O is the origin of the cartesian coordinate system, i.e.: 

X = x - l - i / 2 ,  Y = y - m - j / 2 ,  Z = z - n - k / 2 .  (B2) 

Using matrix notations to describe rotations, roll pitch and yaw 
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are given respectively by 

M~¢.) = 

the following matrices: 

~ 1 0 0 

0 cos# - s i n p  , 

sin ~ cos/2 

0s:  1 
1 , (B3)  

Mr(/?)= ~ - s i n / ~  0 cos/?~ 

°11 cosc~ -s inc~  0 

M~(#)= si c~ cosc~ , 

0 

SECTION B-I 

The elevation angle ~ from the sonar to the target is defined as 
the angle by which the vertical plane containing R must be 
rotated around this vector to include the target. In order to 
express the first condition listed inSection 1.1 (Eq. 6), we denote 
A the unit vector such the (Q,A) defines this tilted plane 
containing the target M (Q E FI, A L H. Using matrix notation, A 
is expressed by: 

= MA~)M,O~)M~(~) . 

(B4) I°/ 
= MA~R)M~O~R) cos ~, . 

~sin ~'J 

Note that in Figure lb, (/~, ~', J ')  is the reference frame of the 
fish corrected for roll, so )3' is the horizontal unit vector perpen- 
dicular to/} and ~, and ~' forms an orthonormal base with R and 
f ' .  Using this reference frame, Eq. (B4) is simply written: 

= ~' cos ~, + ~' sin ~,. (B5) 

Taking J as the origin of coordinates (Eq. 2), any point M in the 
plane (Eq. 6) satisfies: 

J M .  ~] = ½ ~ . ~ 4 .  (B6) 

SECTION B-II  

The second condition of Section 1.1 defines the ellipsoid where 
M lies at constant range from P to Q (Eq. 7). To find an 
approximation of this surface in the athwartship sector, the law 
of cosines is applied to the triangle PQM, yielding: 

P342 -- Q M  2 = 2PQ • JM r. (B7) 

Expanding the left side into a sum and difference product and 
using Eqs. (7) and (BI), this equation becomes: 

P Q . J ~ I = s [ I J M  + PQ/2] - I J ~ -  PQ/2I] .  (B8) 

As shown in Hypothesis I (Eqs. AI-3), the distance PQ between 
the focus points is much smaller than the average radius s. 

Consequently, if I J M I  is factored out on the right side of Eq. 
(BS), the remainder can be expanded in a Taylor series, keeping 
terms up to the third order in (PQ/JM):  

P Q .  J M  (B9) 

m 2  88M4 + ~ ) ~  • 

Under normal operating conditions, for any given ping, the 
cross-track profile of the bottom measured by the sidescan sonar 
lies in a plane that is approximately perpendicular to the direc- 
tion of motion PQ. Hence, PQ • J M  is at least one order of 
magnitude smaller than the scalar product I PQ I I J M I ,  so that 
the last term on the right side of Eq. (B9) is actually of fourth 
order and can be neglected, yielding after simplification: 

pQ2 ] 
J M  = s 1 -  8JM2 ] (B10) 

Squaring both sides of this equation and solving for J M  z up to 
the third order yields the equation of the inner sphere tangent to 
the ellipsoid ( J M  2 = s 2 - (PQ/2) 2, Eq. (8)). 

SECTION B- I l l  

-+ 
Considering Condition 3 in Section 1.1, the plane (HT) = (P, T), 
represents the across-track area of maximal insonification in the 
farfield of the transmitter (Figure 2).Likewise, the correspond- 
ing plane at reception is (Fin) = (Q, R). In the ideal case where 
the sonar experiences no pitch, or yaw, these two planes are 
parallel. In cases where there is pitch or yaw, they intersect along 
a line, so that for any point I along that line: 

~.~=o. (BII) 

~ . ~  =0 .  (B12) 

Following Hypothesis Fi (Eqs. A4-5), the dihedral angle formed 
by planes (P, T) and (Q, R) is very small and remains within the 
same range as the angle measured at the half-power point of the 
one-way beam patterns (receive and transmit beam patterns are 
supposed to be identical). Hence with Hypothesis I (Eqs. A1-3), 
it is reasonable to approximate the locus of the maxima of the 
product of the farfield beam patterns by the plane (riM) bisecting 
the dihedral angle. Consequently, for any point M in the bisect- 
ing plane, 

/M .(/} + T)= 0. (BI3) 
Using Eqs. (2, B 11-12), I is eliminated from Eq. (B 13), yielding: 

(R + T) .  J M  = (R - T) .  PQ/2,  (B14) 

which remains valid when the transmit and receive planes do 
not intersect, i.e./} = "F. The magnitude of the right side of this 
equation is of third order, so it is discarded when handling the 
analytical calculation ((/} + T). J M  = 0, Eq. (9)). 

SECTION B-IV 

Solving the set of Eqs. (B6, 8-9) is conveniently performed by 
first partially solving the two linear Eqs. (B6) and (9). Both 
equations are rewritten here using the notation introduced in 
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Eq. (B2) and omitting part of the terms beyond the second order, 
but for clarity not always expanding tan V: 

X[aR -- flRtan q/] -- Y[1 _ ]o~Rl 2 +flRaRtan¢] 

1 
- ½[i68R tan ¢ - C~R) + j  + ktan ¢], 

and 

(B15) 

Y = - s sin ~/+ ~ c~R[arSin ¢ + (fir + fR)COS¢] 

sin ¢ ¢ + (fir -- fig)cos ¢]21 + T [(aT -- aR)sin 

i 2 
+ ~ s S i n ¢  

+ ~ [i68R sin ¢ -- aRCOS¢) + j c o s 0  + ksin ¢]. 

(B22) 

X[2 1 2 - ~(~r + ~ + f ~  +/~)1  + Y ( ~ +  ~R) 

= Z68R + fir). 
(B16) 

One obtains the partial solution for this system as a function 
of  Z: 

and 

X = ½Z[(ar + ceR) tan ~/+ (fiT + fig)], (B 17) 

1 
Y = Z - tan ~u + aRflR 2 COS 2 0 

+ ½(arian 0 + f l T ) ( t X R  - -  fir tan ¢)) (B 18) 

+ ½[i(flR tan ¢ -- aR) + j  + ktan ¢]. 

Combining the partial solution with the equation of the 
sphere (Eq. 8) yields the following quadratic equation in Z 
(reduced to the second order). 

Z 2 ( 1  + ¼[(aT + OtR) sin 0 + (fir + fiT) COS ¢] 2 

- -  tan ¢[aRflR + (arsin0 + flTCOS¢)(aRCOS ¢ --flRsin¢)]} 

(B19) 
- Z sin ¢[i68Rsin¢ - aRcos¢) + j e o s ¢  + ksin 0] 

+ i 2 COS2 ~ - -  S2GOS 2 ~ / /~  0. 
4 

As previously, trigonometric expressions of the elevation ~u 
stand for their development given in Eqs. (10-11). The solution 
of  Eq. (B 19) is calculated up to the second order: 

Z = s c o s  ~ / - -  Is(flR[(Ot r -- aR)sin ¢ + flTCOS ¢)] 

COS 0 ~, 
[tar -- aR)sin ¢ + (fir -- fiR) c°s ¢] 2~ 

(B20) 
i 2 

- -  - -  COS ¢ 
8s 

+ ~ - ~  [i68Rsin¢ - aRCOS0) + j c o s 0  + ksin¢]. 

Then, replacing Z in Eqs. (B 1 7-1 8) gives respectively the along- 
track and across-track coordinates: 

X = ½s {(at + aR) sin ¢ + (fit + fig) COS ¢ 

+ (,U + ~)[(ar + aR)COS ¢ -- (fir + fig)sin ¢]}, 
(B21) 

Eqs. (B20-22), in conjunction with Eq. (B2), give all the terms 
that should be taken into account in the worst cases. However, 
by adding some realistic assumptions, a variety of results can be 
derived from this set of equations. First, the along-track dimen- 
sion of the beam footprint is commensurate with S03dB, i.e. a first 
order quantity (Eq. A2). Hence, second order terms in Eq. (B21) 
are much smaller and can be disregarded in the determination of 
x. In addition, as mentioned above, the along-track component 
of PQ (i.e. i) is always much smaller than the range s. Although 
i/s is considered and kept as a first order quantity, the ratio 
fl/(8s 2) is always much smaller than other second order terms in 
Eqs. (B20, B22) and can be neglected. On the other hand, large 
variations of pitch or yaw are unlikely to occur within the time 
interval between pulse transmission and seafloor backscatter 
signal reception. For instance, yaw at transmit can be as large as 
ar  ~ 1/5 rad, as would occur in a strong lateral current or during 
a course change, although the rate of change of yaw is slow 
enough so that the difference in yaw between transmit and 
receive remains smaller than law - aR [ ~< (1/50 rad. As a result, 
yaw and pitch values can be substituted by their average (E. 15), 
and the second order terms involving the variations of these 
angles can be disregarded. Applying these approximations to 
Eqs. (B20-B22) leads finally to the set of simplified relations 
given in the text (Eqs. 12-14) that is used subsequently. 

C. VARIANCE CALCULATIONS 

First, we express the solution of the least squares problem in 
Eqs. (47-48). For a regular, rectangular grid as defined in Eqs. 
(44-45), the general solution is: 

Ax tan  f x = L ( L  + l)(2L + l ) (2W + l) p [ q ' J '  

3 I 1 zXytan ~y W ( W +  1)(2W+ 1)(2L + 1) y' q2Zp, q , (C2) q t- p 3 

and 

1 

h = ( 2 L  + 1)(2W+ 1)~ Y,z;,q.q (C3) 

The samples Zp, q are given in Eq. (46), in which terms 3x, 6y and 
6z are derived from Eqs. (36-38). Recalling that the problem is 
restricted to smafl-scale fluctuations, the transmit point P can be 
reset to the origin of the coordinate system (! = m = n = 0). 
Moreover, in calculating ~x and ~y, z is replaced by its value at 
the reference points (xp, yq). The along-track translations due to 
yaw (a) and pitch 68) are then: 

~x ~. flp(Zo - p a x  tan Ox + qAy tan Oy) - ap(Yo + qAy). (C4) 

Similarly, the across-track translations due to roll (/z) plus the 
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noise due to the bathymetry processing (~) are: 

6y = - (~p + ~p,q)(Zo- p a x t a n  Ox + qAytan 0y), (C5) 

and the vertical variations due to the same causes are 

dz ~-(,% + ~p.q)(Yo + qAy). (C6) /~2 = 

Replacing these expressions in Eq. (46) yields: 

Zp, q = Zo - p a x  tan 0~ + qAy tan 0y 

- -  [ a p ( y  0 -+- qAy) 
+ flp(z o - pax tan Ox + qAy tan 0y)]tan 0~ (C7) 

- -  (,up + ~p,q) LYo + (Zo - p ~ c  tan Ox) tan 0y 
F 

As parameters ap, tip, gp, and ~p, q have zero mean, the slopes and 
the depth, that are solutions of Eqs. (C1-C3), have expected 
values: 

E[h] = Zo, E[~x] = Ox, E[~,] = 0~. (C8) 

However, we are interested in the variances over these results. 
To this end, it is necessary to derive first the expression of their 
particular occurrence. Hence, developing Eqs. (C1-C3) yields: 

3 
tan ~ = tan Ox - L(L + 1)(2L + 1)ax ~ 

X P. p { [ a y o -  flp(Zo- pax tan 0~)]tan Ox 
p 

- #flY0 + (Zo - pax tan 0x)tan 0yl} 
(C9) 

3 + 
L(L + 1)(2L + 1)(2W + 1)ax 

× ~ ~ P{Yo + (zo- PAxtan O~)tan O, 

+ qAy ~ } ~p,q, 

tan~,=tanOy+2L---~[(%-flptanOy)tanOx-PPco@ff~] 

W(W + 1)(2 W + 1)(2L + 1)Ay 
(C10) and 

× ~p ~q q[yo + (zo- p&rtan O~)tan Oy 

-k qAy~]~p,q, 

and 

1 
h = z 0 + ~-7-7-:'., Y~ {[c~y0 - flp(Zo- p&r tan0~)ltan0~ 2L~-lp 

-/lp[yo + (zo - pzXx tan 0z)tan 0y]} 
(C l l )  

1)(2wl + 1) { ~ Yo + (Zo - p a x  tan 0~)tan0y 
(2L + 

+ q A y ~  } ~p,q. 

Using the linearity of the variances for independant Gauss- 
ian variables, one deduces the variance of the offset as given in 
Eq. (C11): 

1 {I~2yo2 + ]~2 [z02 + ~Ax)2tan2Oy]]tanZOx 
2 L + l  

+ fi2[(yo+zotanO,)2+~(zL~c)2tan2Oxtan20y ] 

+ ~ ~z (Yo + Zo tan 0y) 2 (C12) 

+ ~ ( 2 ~ x ) 2 t a n  2 0ztan 2 0y 

W(W+ 1)(Ay)Z co@4 0y ] } " 
+ 3 

In looking for relatively small standard deviations, ~, over the 
slope angles, the following approximate relation with deviations 
in tangents, ~, is used: 

~ "~cos 2 0, (C13) 

and, one deduces from Eqs. (C9-C10): 

3 COS 2 0 x 
L(L + 1)(2L + 1)(Ax) 2 

×II&ZY2+fl2[zg+3L2+3L-l(Ax)2tan2Ox]] 

+/22 [(Yo + zotan 0y) 2 cos 20x 

3L 2. + 3L - l(zkx)ZtanZOfiinZOx] (C14) 
+ 5 

3L 2 + 3L - 1 + 5 (Ax)2tan2Oysin20x 

+ w ( w  + 1 ) _  .2 cos2 0x ] ] 
3 t/-xy) c~s4OyJ;, 

2L + 1 (~2c°$20Y +[~2sin2Oy)tan2Oxc°s2Oy+fi2 

1 q- 
W(W+ 1)(2W + 1)(ay) 2 

× ~2 [3(yo cos 0y + Zo sin 0y)%OS 2 0y (C15) 

+ L (L + 1)(Ax) 2 tan 2 0xsin 2 0ycos z 0v 

+ 3(3W2 + 3 W - 5  1)(/~y)2] } , 

Eqs. (C 12, C 14-C 15) are wwritten for reference purpose, and to 
allow checking intermediate calculations and further approxi- 
mations. Although seemingly busy, these equations can be easily 
simplified by comparing the order of magnitude of each term, 

2 W +  1 1_ 
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deduced from some basic remarks which listed in the 
main text. Using these conditions, Eq. (C14) can be approxi- 
mated by: 

~z x ~ 12cosZOx~ (L + 1/2) z 
p~ L(L + 1) 

I( a 2yg + ~2zg ) sin 20x (C 16) X 

+(,+ 1, ~2) (Yo + Zo tan 0y)2cos z 

Eq. (C15) gives: 

~2 ~ 2L-~I(&2cos20y + f?2sin2Oy)tan~Oxcos20, + ft 2 

12Ay ( W + 1/2) 2 (C 17) 
+~? p~, w(w+ l) 
× (YocOSOy + zosinOy)Zcos2Oy], 

whereas Eq. (C12) is reduced to: 

h ~2-~+ l [(&2y2 + fl2z2)tan20x 

1 

(el8) 

tan 0y)2]. 

D.  INVERSE PROBLEM 

To find a solution to the inverse problem stated at the beginning 
of Section 3.2 one calculates first the variances in slopes asso- 
ciated with the patch of seafloor centered at Yo = z0, and with 
3 ~ f l  ~ / i  ~ 9. Eqs. (55-56) can be rewritten as: 

~} ~ 12 cos 20x ~p;~ 
(D1) 

×[2sin20x92+(l+tanOy)2cos20~(~2+~2-~)], 

(D2) 

+ 12(1 + sin 20y)cos2 0 y ~  ~21 , 

D-I. FLAT PATCH 

Section D-I. I. 
With 0~ = 0y = 0, Eqs. (D1-D2) yield: 

p3 k Py O' 
(D3) 

(D4) 

provides a numerical solution: 

p x ~ I i + p _ a ~ ] l l +  p92 ~ ]-~p~ 
Ay~J[_ 12Ayz2~2J '"  

=[12zXxAYZ~] '/4 ~ 1/2 1 a y ~ J  

(D6) 

U 
p~2 ]3/8 

x/1 + 12Ayzg~2j • 

The latter equation contains the only unknown Pr- It is a fast 
converging iterative formula. Equating the right sides of Eqs. 
(D3-D4) and recalling that we are only interested in a solution 
that verifies Px ~< z0 (Eq. 49), one sees that the second term in Eq. 
(D4) is at least 11 times larger than the first one, i.e.: 

3~2 
Py7 _ ~_ ~ 1 (D7) 

12Ay z~ ~z ' 

Incidentally, looking back at the direct problem, Eq. (D7) shows 
that only the noise term (~) is perminent in finding the across- 
track slope, hence it is generally possible to proceed with the 
reduction from Eq. (56) to Eq. (58). 

It follows from Eq. (D7) that the right brackets in Eqs. (D5- 
D6) can be neglected, yielding Eqs. (59-60) in the text. Then, 
from Eq. (60), one calculates the slope of the right side of this 
iterative formula, seen as a function of p /  

IPvl~lP--r-~[l+~y~'2J8Ay < 8 '  (D8) 

AS this slope is small compared to unity, the convergence of the 
process is fast, and a single step is usually sufficient to obtain a 
correct figure. 

Section D-I.2. 
Two approximate solutions can be derived from Eqs. (59-60). 
The situation which is the more likely to be encountered in 
actual design, is presented in the text (Eqs. 61-62). The other 
case occurs if the condition written by reversing the order of 
magnitude in Eq. (62) is true, i.e.: 

~2 
--,> 1, (D9) zXy ~2 

It implies for instance that the noise in the elevation measure- 
ments (~) is not larger than the attitude angular variations (Eq. 
(49) being verified). With Eq. (D9), Eqs. (59-60) yield: 

and 

l 9211/3 
px = [12 zo ? j (DlO) 

F ~2w3 F 4 ~6 ~1/9 
& = [Ayp~ }5 j ~ 1.7 [(Ax)2(Ay)3zo } - ~ J .  (Dll) 

This value for py c a n  be used as an alternative seed in the 
iterative solution (Eq. 60) that applies in the more general case. 

SECTION D-II. MODEL WITH UNIFORM SLOPE DISTRIBUTION 

There is no explicit analytical solution (Px,Pr) for this sys- Integrating Eqs. (DI-D2)  over 0 x and 0y in the interval 
tem. However, the implicit form as written in the following [-45 °, 45°] 2 yields, respectively: 
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12 Ax z2 [1.13~2 + 0.88AY~2], (D12) 
~2 ~ p2 L p,  , 

zXy z~ ] ~ ~Ax[1.1492+ 9 . 8 - -  ~2 (D13) 
Px k p3 , 

which is very similar to the previous system (Eqs. D3-D4), 
yielding finally the system of Eqs. (63-64) in the text. IfEq. (62) 
is verified, the following approximate solution applies: 

F~-71,2 
px p,= 18{  yzgll'4[}J , (D14) 

which is very close to Eq. (6 I). 
If the orders of magnitude in Eq. (62) are reversed, the 

approximate solution takes the form: 

F 9211/3 
p~ "~ 1.0 L12k.x" Zo2 ~ ]  (D15) 

and 
F 2 ~2 ]113 

p, ~ O.9 LAy p. ~ ] 

1.6 [(Ax)2(Ay)3z 4 ~6 ]1,9 (D16)  

which is also very- close to Eqs. (D10-D11). 
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