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INTRODUCTION

The Fourier theory of harmonic radiation is now a classical
tool in Optics or in Acoustics {1}. It is in general limited to an
isotropic non absorbing medium and mest of its applications are
obtained in the frame of the Fresnel (or Fraunhofer) paraxial
approximation which remains valid for the great majority of opti-
cal or acoustical imaging or detection devices. It implies essen-
tially a 2-D Fourier analysis in planes [z normal to a mean pro-
pagation direction Oz. The purpose of this article is to recall
{2,3,4,5} that such an analysis may be extended straight forward
to absorbing media just by using adequate plane modes expressing
a phase variation dictated by a classical real wave vector and a
an attenuation dictated by an imaginary wave vector parallel to Oz
in such a way that the equiamplitude planes remain parallel to the
reference plane z = O ; the signature of such a "generalized plane
wave" remains adequate for a Fourier analysis. It will be shown
that the Fresnel approximation has also a straight forward exten-
sion in this case, so that all the classical results of the Fourier
theory in the Fresnel frame may easily be corracted. Furthermore,
the Fresnel approximation consists in using a limited development
of the 2z compon=nt of the wave vector in terms of the spatial fre-
quency £ valid for small values of . It may be extended to non
paraxial situations important in NDE or in submarine detection of
objects buried in sediments occurring when a beam is focused
through a plane interface at large incidence. The mean direction
of the transmitted beam may encounter a large deflexion, but
correszonds in fact to the samec spatial frequency Eo in planes
parallel to the interface than the mcan incident direction in the
‘First medium. It is then possible to extend the Fresnel approxima-



tion to limited developments in terms of E' =_£--f° , an approxima-
tion which remains valid if the original beam has a reasonable
angular aperture. The main aberrations encountered by the trans-
mitted beam may be shown easily when assuming that the incident
focus beam has a gaussian structure.

PLANE FOURIER ANALYSIS OF A LINEAR HARMONIC RADIATION IN AN
HOMOGENEOUS MEDIUM

If the radiation field may be described by means of a scalar
function ¢(M,t) = U(M)e-JWt, a Fourier analysis of the complex
amplitude U may be developed inside planes M, normal to a chosen
direction 0z, with the family of functions Uz :

Uy(®) = U(H) , H=ms2Zz T
For the Fourier expression of Un(;) in II, :
- ITw

the solution for the half space z > 0 in the absence of sources
may be written

U(R) = jA.(Z‘)M(Fﬁ?) 5 (2

where u(M,f) is the solution of the propagation equation which has
the signature e2imEem jin I, - =

4 ,For an Epmogeneousépedium, the solution u is a "plane" wave
eik*M yhere k = 27F + ky 2 must satisfy the dispersion eguation asso-
ciated to the propagation equation and the relation (2) gives
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which means that the radiation in [[, may be expressed from its ex-
pression in [[; through the operations in the real space and in the

Fourier space
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In the classical Fourier theory of optics or acoustics, the propa-
gating medium is isotropic and non absorbing and the propagation
equation is the ordinary wave equation
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The plane waves elX*M are ordinary plane waves :
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The Fresnel paraxial approximation (Af < 1) uses the classical ex-
pressions for the operators Hy, and hy;
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THE CASE OF AN ATTENUATING MEDIUM
The preceding formalism is extended straightforward to the
case of an absorbing medium, for example the acoustical radiation

in a viscous fluid : the propagation equation may be written for
the velocity potential ¢
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The dispersion equation
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leads simply to attenuated plane wave modes elX *X yhere k" =k'"n

and k" = k+ja = 2
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a being the classical attenuation coefficient : an approximate so-
lution valid for aA << 1.

These modes are not approprlate to a Fourier analysis and must
be replaced by modes u(f M):ejk'M of szgnature eQJW?‘m in [ with
a complex component kj of the wave vector K'. These modes (Fig. 1)
have equiphase planes normal to the real part of k' and equiampli-
tude planes normal to 0z, and are determined from the dispersion
equation according to
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Figure 1

If al << 1, the adeguate solution may be written :
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and the corresponding Fresnel paraxial approximation (Af« 1) to
L
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The propagation operators from [y to I, are then modified from (7)
according to : 2
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whizh me=n3 that th- e . >t of tp- attenuation is in additisn of =2
gloo-+l art-nuatisg & 27 a2 smonthing by a gaussian funchion
e-7(m/8)? . Tnis smz.fh:iin; eff=ct is in gensral of negligihle imzor-

tance in practiczl ima2ging devices because 8 remains very small in
front of the Focused sgot size € = A/B;, where 8y is the angular
apzrture of the focusing system. The equality € = § requirss

az = Eﬂfeé and a global attenuation of 55dB for an aperture of
8, = 1, which seems to be of consideration only for acoustical mi-
croscouy whire botn high angular apertures and high attenuztions

may be encountered {S}.



EXTENSION OF THE FRESNEL APPROXIMATION TO NON PARAXIAL BEAMS

It is well known that a focused beam oriented obliquely towards
a plane interface separating two media of different velocities en-
counters strong aberrations. This situation interests the submarine
detection of objects buried in sediments or, in NDE, the detection
of defects not parallel to the surface. In this case, the Fourier
analysis in planes Il, parallel to the interface [l remains very
useful but the paraxial approximation is no longer valid. However,
an equivalent approximation may be developed considering that the
mean direction of the beam corresponds to plane wave modes associa-
ted to the same spatial frequency ?n in both media so that the
spectrum Az(fj of a beam of reasonable aperture may be developed
around fo, i.e. in terms of the spatial frequency %'==f-—?u. The
equivalent Fresnel approximation consists then in developing kz in
terms of £'and using the associated expressions for the propagation
operators Hgyz and hgz, the dispersion equation associated to an
isotropig medium gives through an elementary calculation, choosing
o = Egrxie
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where 8, is the incidence associated to the spatial frequency fy -

. ; jkzz .
Obviously,the propagation operator Hoz:=eJ 2%, associated to
the "Fresnel" expression of kz, will deliver for a gaussian beam
focused in Mz, (z =2z;)

O e
Azo(j(;ff;’) s Ls E_T(@W _‘cx"‘ VT:FV

= .ﬁj+—1} Jv} (14)
U, (%) = s vig T(f’r;'x 8oy ) g R

a7 v
g;r oy

a solution in [, of the form
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U, (x,y) = C e i | bx by Y : (15-b)
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where a, bx, by are complex quantities, and Vgxby the square root

with a positive real part.

Noting a,by,y =a',by,y - ja",bx,y , one may check that the
by y must remain > 0, and that the focus Fy corresponds to the
nul{ing of the b;’y. If now this beam is focused through an inter-
face located in [, (z=0) so that F; is a virtual focus, this
formalism permits to attain easily the nature of the beam transmit-
ted through the different material disposed in z > 0 and noted with
the subscript 1 ;

| A;(?‘) = Azn. Hz,o B, Ho'zl ’ ki

-
where t(f') is the coefficient of transwission for generalized
plane modes associated to the signature f' in both materials.

A problem arises from the transmission term t(f') which depends
on the physical nature of the problem. For beams of low angular
aperture, a reasonable approximation is to assume t(f} = t(fﬁ] be-
cause t(f) has slow variation in phase in front of Au{f'). We have
also used matched developments of t(¥') which have the mathematical
form given in (15) for the Az so that the gaussian structure of the
beam remains preserved. This last operation affords negligible cor-
rections on the numerical results obtained in the great majority of
t?e problems that we have studied. In both cases, the solution
Uz (x,y) remains identical to the solution (15). An elementary cal-
culation shows that the maximum radiation is located in Iz at
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and the width of the beam at 6 dB in the directions x or y is
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THE CASE OF NON ABRSORBING MEDIA

This case interests many optical or acoustical situations. In
acoustics, an interesting example is in NDE the detection of de-
fects oriented obliquely or even normally to the surface of a solid
Such a detection may be done wusing an immersion technique and a
focusing transducer oriented obliquely towards the surface with an
adequate angle of incidence, so that the transmitted beam of trans-
verse (or longitudinal) waves has sufficient incidence to give
enough reflection from the target, specularly or by edge diffrac-



tion. In the solid medium, the shear yave (of the SV kind) may be
described through a vector potential Pt = ' ¥ which gives the velo-
city through the relation v = Rot J! so that the velocity potential
in water (first medium, c = 1500 m/s) is associated to the scalar '
in the second medium (1) (steel for example : Cp = 3200 m/s) and
the transfer coefficient t (¥) must be expressed in term of Y/¢
for a plane wave of signature . For longitudinal waves, the retai-
ned scalar is obviously the velocity potential ¢ (in steel ,

CL = 59800 111/5} &

In a first approach, it is reasonable to neglect the attenua-
tion for both media, and referring to the expression (13') of kg
for non absorbing media, it may be checked that the solution (15)
associated to a gaussian beam (14) is modified by the propagation
operators Hgyz and Héz according to (16) in keeping constant values
for by, = bgy - Then, from (18), it appears that the minimum
width of the beam, i.e. focusing, is obtained in the x (or y) di-
rection for a value of z such that b; (or by) = 0, and from (17),
the focus point is located at the correspon ing value of x=a'(z).
1f we assume t(%) = t(fn) = t,, the solution A; given by (16)
corresponds to the values of a,by,y taking in account the expres-
sion  (137) of ik
4
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There are two focal points Fy and Fy where the beam width is mini-
mized in the x and y directions respectively. They are located on
the mean refracted ray x = a(z) at respective depths
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Taking in account that £, = sinf /A = sinet/ll, it is easy to

check that F., is on Oz like F, and that the focal distances IFy
and IFy are 1n the ratio

R YT

ratio which is < 1 if c! > ¢. This aberration is well known and
may be explained using a ray theory {6}.



Another interesting remark is that at the focuses Fy and FX'
the beam exhibits in the x and y directions respectively exactly
the same gaussian variation as the virtual beam at Fp.

NUMERICAL EXPERIMENTS

In the proposed numerical applications, we point out the cha-
racteristics of the refracted acoustic field for two kinds of inter-
faces with different patterns of the incident beam.

Results are exposed through equiamplitude lines in the incident
plane (X,2) and in the perpendicular cylindrical (quasi planar)
surface which contains the line of maxima levels. This second net-
work is projected upon a vertical plane (¥,2), and also upon the
interface (X,Y) if the refracted mean angle is large. The corres-
ponding 6 dB X and Y resolutions and the maximal pressure level
are drawn as functions of depth. All distances are given in wave
lengths A in the first medium.

The first example concerns the interface water/steel with such
an angular incidence that only shear waves are generated in metal.
We assume a constant transmitting coefficient in those computations
and attenuation is neglected, except when displaying the X Y reso-
lutions and maximal level in Figs.2-B and 3-B. In this case,
c/ct =0.459, p/p1 = 0.127. We retain for the incident angle the
value 6, = 18.94° (the critical angle 8; =27.33").6 dB-half width
at virtual focused points are 2x = &y = 2A.

The figures 2-A and 2-B illustrate the case of an incident
gaussian beam which is focused at the depth Zy = Zy = 200 A. The
figures 3-A and 3-B show the effects fo the aberration correction
obtained using a bifocused beam with Zy = 358 A and Zy = 200 A
(Zx/Zy = cos’Bg/cos’Bé). In the displays 2-B and 3-B of levels and
resolutions, dashed lines (b) and (c) show the influence of the
absorption in the second medium for respective attenuations of 0.5
and 1 dB/Al. These results show that, as mentioned earlier for a
normal incidence, the resolution is very weakly affected by the
attenuation.

The second example recovers characteristics of a model water/
marine sediments (modelled as an absorbing ligquid):

c/ct = 0.754 ;. p/p* = 0.667 ; o' = 0.5 ae/Al

We simulate a square projector with sides of 11.8 A located 20 A
above the interface. Computations concern two different incident
angles : 48° and 40° (the value of the critical angle is Bc =49.84°).
In each case, the depth of the focus Fy is settled so that lateral
resolution keeps a maximal value at a depth of 20 A. We obtain :

Zy = 36.4 A with B8, = 48° (E.Y = 3.2 Q)
and z, = 18.3 A with 8, = 40° (&, = 1.9 A)



So, we retain three choices for the location of Fy :

- a unique virtual focus Zx = 2y (Fig. 4)

- Zx chosen so that acoustic pressure is maximal at a depth of 20A
(Fig. 5); then, Z, = 310 A when 8, = 48° (& = 18.5 A)
and 2y = 63 A when 8, = 40° (& = 4.1 1)

- in the incident plane (X,2), the beam is collimated (Fig. 6).

We can notice, from these results, that, in case of absorbing
media, the nearer of the interface the virtual point Fyx is, the
more curved the maxima pressure line is, and the deeper its direc-
tion is oriented. On the other hand, maximizing the level at the
depth of 20 A leads to a ‘quasi-uniform field in the X direction.

CONCLUSION

We have extended the classical Fresnel approximation to beams
propagating in absorbing media and according to an oblique axis, a
theory which permits to attain aberrations encountered when focu-
sing through a plane interface. NDE and submarine acoustical
examples have been treated for gaussian beams which give the beha-
viour of any focused beam at least for the main lobe.
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Figure 2-A - Equiamplitude lines : - 0.1, - 3, -6, - 9, - 12 and

- 15 4B ref. maxi pressure in the refracted field.
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Figure 2-3 - Maxizzl levsl (Lv) and X-Y resolutions (R, and Ry]
versus depth : ;
(a) al =0 aB/At ; (b) a'=0,5 aB/A! ; (c) a!=taz/A!

INTERFACE WATER/STEEL

c/c! = 0.459 ; P/P' =0.127 ; B, = 18.94°
Unique virtual focus : 24 =2y = 200 X ; &, = P‘y = 2X
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Figure 3-A - Equiamplitude lines : - 0.1, - 3, -6, - 9, - 12 and
- 15 dB ref. maxi pressure in the refracted field.
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Figure 3-B - Maximal level! (Lv) and X-Y resoluftions (R, and Ry)

versus depth
(a) a' =0 daB/A! ; (b) a'=0,5 dB/A' ; (c) a'= 1 aB/A}

INTERFACE WATER/STEEL

c/ct = 0.459 ; p/P' = 0.127 ; B, = 18.94°
Virtual focuses : Z, = 358 L z, = 200 AL = 1y==2A
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INTEREACE WATE®/SEDIMENT : c/ct=0.764 ; p/p'=0.667 ; o' =0.5d8/A!

- Transmitter : 11.8A % 11.8 A located 20 A above interface.

- Equiamplitude lines:-1, -6, - 12, -18, - 24, -30 and - 36dB
ref. maxi pressure in the refracted field.
- Maximal pressurz leval (Lv) ard X-Y resolutions (Ryg and Ry) versus Zdegth.
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Figures 5-B
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WATEZR/SEDIMENT : c/cl =0.764 ; p/p' =0.657 ; o' =0.548/A

- Transmitter : 11.8 A X 11.8 A located 20 A above interface.

- Eguiamplitude lines

-1, -6, -12,

- 18, -24,

- 30 arnd

- 36dB

ref. maxi pressure in the refracted field.
- Maximal pressure levzl (Lv) and X-¥ resolutions (R and Ry) versus Genktn
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INTERFACE WATER/SEDIMENT : c/cl=0.764 ; p/p' =0.667 ; a'=0.548/A"

- Transmitter

- Equiamplitude lines

11.8 A x 11.8 XA located 20 A above interface.

Sride
reZ.

-6, -12, -18, -24, - 30 and - 36 dB
maxi pressure in the refracted field.

- Maximal pressure level (Lv) and Y resolution (RY) versus deopthn.
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