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Résumé. — On commence par recenser les principales techniques de calcul des coefficients d’apodisation utilisant la mé-
thode de Dolph-Chebyshev. On présente ensuite une nouvelle formulation exacte du calcul qui conduit 4 un algorithme
rapide implant€ sur un PC donnant des résultats précis méme pour des réseaux de grande taille.

Abstract. — The main techniques for calculating the shading amplitude coefficients of linear arrays with the Dolph-
Chebyshev method are first rewieved. A simple, new, exact formulation is then presented that can be calculated by a fast
algorithm on a PC and yields accurate results, even for very large arrays.

Introduction.

Underwater imaging leads to the use of linear arrays of
transducers. It is well known that it is necessary 10 use
shading patterns to reduce sidelobe level [1, 2]. Among
these patterns, the Dolph technique [3] is an interessant one
: weighting the amplitudes of a linear array of N identi-
cal, equally spaced elements, so that the resulting pattern
yields a minimum beamwidth with an arbitrary given main-
lobe/sidelobe level ratio (r). This method depends on cer-
tain properties of the Chebyshev polynomials 7;,:

n:2 cos(ncos™'  (z)) |z| <1,
Ta(z)=) allpe” P = {cosh (ncosh™ (2)) 2> 1.
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("n:2” means the arithmetical division of n by 2, and the
symbol ":” will keep this meaning in all subsequent integer
expressions).

It can be shown that the proper N shading coefficients A;
(numbered symetrically from i = —N: 2 to N:2, excluding i
= O when N is even) are found by solving the polynomial
equation :

TN_I(IQ COSC!) = Z A(N-z}_,;.COS(IN‘-l —2&} O‘J, (A, = A_()
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where zo(> 1) is deduced from Ty _;(2g) = r.

Several expressions have been proposed to calculate these

shading coefficients. The first (Barbiere [4], Stegen [5],

Brown [6], Salzer [7]) were all based on finite series of
terms of alternating sign. A representative expression of
this group may be written with our notations :
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The main problem encountered with these formulations
is that the values of each term in the series increase dras-
tically with the number of elements. It yields a loss of sig-
nificant figures during the numerical process, and the final
results begin to diverge as soon as the antenna is made up
with more than about 24 elements (double precision com-
putation). The same kind of problem limits the extensive
application of other methods based on Fourier transform
(Diderich [8], Nuttal [9] and matrix (Balakrishnan ez al. [10),
Zielinski [11]) formulations. Van der Maas [12] and Drane
[13] have given approximate solutions for large arrays which
overcome this difficulty. These authors reorder the series
so that they contain only positive terms. Van de Maas orig-
inally reaches this formulation by using a power series of
the new variable (23—1)/z3. Bresler [14] improves this tech-
nique, and gives an exact solution in the form of recursive
nested products. The comparative study of Burns er al. [15]
shows clearly that this last formulation leads to the fastest
algorithm and the most accurate results.

In this paper, we present a similar recursive method based
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When N becomes large, it is no longer convenient to com-
pute this sum straightforwardly. Rather, we save accuracy

A(N;g}_g = xf,v'l"sz I:l + X
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The expression (3) involves only sums and products of
well-conditioned values, easy to program and fast to com-
pute, even with small desktop machines, using only 16-bit
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on another development. This algorithm is valid even for
a large array (more than 100 elements). The numerical
results are very accurate and can be obtained by fast single-
precision computation on a personal computer.

The recursive algorithm.

The zp solution of the equation Ty _1(zp) = r can be
written :

Pl %(bl!(N—l} + 5 YN-D) with b = r + (r2 — 1)}/2,

and it can be noted that the larger N is, the closer to unity
is zo. The expression (1) is difficult to compute because the
limited number of significant digits leads to the loss of the
difference between large powers of zg and unity. For this
reason, we introduce the new variable X = 23—1, noting
that the increment in successive powers of zg is 2. Thus, we
obtain the following expression :

(2)

and computation time in expressing (2) as the nested prod-
uct :

w{l+__, (3)
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real numbers. This nested product formulation is an alter-
native solution to Bresler's [14].
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