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ABSTRACT

This study 1s based on a Fourler analysis [4] and glves the paraxial
solution of the secondary fleld generated by 2 parametric transmitting
array at any distance of the antenna. The primary beams are supposed to be
narrow and the saturation effects are taken into account using numerical
extra—attenuation laws from a one-dimension model. Some numerical results
are given concerning the farfield of circular pistons. These curves exhibit
the optimal specificatlions (maximal secondary level vs. secondary
beamwidth) that may be achieved with a difference frequency equal to 15 kHz
and a given directivity. It shows that choosing the primary central
frequency and the primary acoustic level is very critical. A large antenna
(im x 1.4m) 1s bullt in our laboratory to achieve an experimental
confrontation.

INTRODUCTION

The power efficiency of a parametric transmitter is very low and it is
known that increasing the primary acoustic level induces losses of
parametric gains. The saturation effect causes a relative shortening of the
source line which reduces the parametric directivity, the secondary level
does not fully benefit from the increased power fed to the antenna. So, the
directivity and intensity of the difference-frequency wave (DFW) are
antagonist qualities. These performances depend upon three main factors:
the central primary frequency, the source level and the size of the
antenna. Many works have been done on this issue, based on a model (Moffett
and Mellen [1]) that introduced a Taper function which reflects the
distortion affecting the couple of primary waves. Extensive results for
engineering purpose have been provided in Ref.Z2. The main difficulty
encountered with the conventional approach arises from the complexity of
integrating the source terms. It leads to use certain geometric assumptions
and the secondary nearfield is very difficult to obtain. An efficient
alternative method 1is to use a formalism based on =a spatial Fourier
analysis (Alais [3]). Many problems of the nonlinear acoustics can be
reformulated in this way, including saturation limited propagation [4].
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In the present paper, we take advantage of this formalism to derive
the parametric fleld generated by finite-amplitude primary waves, using in
other respects the following main hypothesis: narrow primary beams;
preponderant role of the two primary beams to generate the DFW; nonlinear
damping of these primary waves deduced from a one-dimension model. The
equations used to compute numerical results have not been set with
dimensionless parameters. It allows to use actual coefficients of viscous
absorption in sea water. Thus, we present some curves concerning the
farfield of circular pistons, with a 15 kHz difference frequency. These
results have been used to design a large parametric antenna which is now
being bullt.

THEORY

The transducer of a parametric transmitter is driven with two primary
frequencies, but owing to the nonlinear interactions, numerous waves at the
combination frequencies are generated during the propagation. Within the
second order approximation, the global acoustic fleld, expressed in terms
of the velocity potential ¢, follows the classical wave equation:
o'¢ = S(¢), in which S is the quadratic source term which reflects binary
interactions between waves and O’ denotes the operator of propagation in
absorbing media. There is no explicit way to solve it. However, it may be
assumed to a certaln extent that much of the energy of the parametric wave
is provided by the interaction only of the primary waves. This idea is
partly supported by the fact that the growth of the higher frequency
components able to generate the DFW is checked by the linear absorption.
The lower level of these components and their limited spatial extent,
compared with the primary waves, lead to neglect these contributions. On
the other hand, the acoustic levels of the waves at the low frequency
combinations are supposed too weak to significantly alter the DFW. So then,
the secondary flield will be calculated with the wave equation: (indexes 1-2
refer to primary waves)
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Let us now consider the linear propagation in a viscous fluid of a
harmonic wave ¢(r)exp(-jwt) radiating toward the average direction z, in
the half space z>0 without source. In a plane Tz, this field can be written
as the spatial inverse Fourier transform of the spectrum A (f) related to

this plane:
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in which the real vectors f are the observed spatial frequencies in that
plane. It can be shown that the following inhomogeneous plane modes [3] are
solutions of the linear wave equation o'¢ = O:
Aoemp[J[k.r-ut] - ig], with k=2, k=k_+2nf, 2nf=kein8, 0=(k,z) (3)
(a 1s the coefficient of linear absorption)

so that A: is related to the spectrum ﬁo in the reference plane Ho by:

aZz
Ailf) = Ab(f) eap[- 5 * jkzz]. (4)
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and the field ¢(r)eap(-jut) (Eq.2) 1s seen as a sum of modes (f,w) (Eq.3)
weighted by the assoclated reference spectral values Aotf).

During nonlinear propagation, the space-time \spectra]. components of
the radiated flelds change. Each harmonic beam can still be described with
Eq.(2), but now with z-varying amplitudes of the reference spectra. The
analysis of invariances in Eq. (1) shows that the interaction of two primary
modes contributes to the growth of the difference mode (spatial and
temporal frequencies). Due to the slow evolution of the amplitude of this
mode when travelling a wavelength-like distance, Eq. (1) finally results in
a first order differential equation:

d"‘u{-ltf e B“iuz A
dz - 2c3 o(1)

with » = {a1+u2—a_}—J(ak_). in which Ak_ is the gap between the source wave

(£,,2) avr; (s)

(£,,2) Ayq

vector kg—k1 and the parametric wave vector k . The z-dependance of the

primary amplitudes forbids the analytical integration of Eq.(5). But its
numerical evaluation can be significantly simplified with the following
reasoning. The presence of phase shifts (Ak)z between sources and created
waves that appear when solving the second order wave equation with
inhomogeneous plane modes shows that efficient nonlinear interactlions occur
only as far as the wave vectors of the contributing modes point to very
close directions. According to the hypothesis that the angular apertures of
the primary beams are very narrowv, the combinations of harmonics generated
by nonlinearity grow significantly only within the paraxial direction. It
induces to evaluate the nonlinear damping of the primary waves with null
Aks, 1.e. within a one-dimension model. Thus, 1t enables to separate the
variables £ and z to express the primary spectral components:

(£,z) = ultz] A;(“(ﬂ. (i=1,2) (6)

Ai:un
The most significant mechanism altering the parametric generation, i.e.
the nonlinear decay of the source line, is described by means of the
functions u(z). They are obtained by numerically solving a time Fourier
expansion of the Burger's equation, in which the limit conditions are given
by the velocity amplitude at the front face of the transducer. The
distributions A’ are dictated by the shape of the transducer. With a
piston-like transducer, they identify with the spatial Fourier transform
A(f) of the pupil function on the aperture of the transducer. The complete
value of a secondary spectrum component is then obtained by integrating
into the spatial frequency plane all the couples of modes that contribute
to generate this mode. It leads finally to the pressure spectrum:

Je Buw
(p) o OGP ® e -uz
AP (£_,2) = 2 ”[A (£-£ )A(£) Jzul(z)uzm = dz] ar. (1)

These distributions are defined for every observation plane Mz. They
may be understood as spectra returned to the z=0 plane, which correspond to
fictive sources, entirely localized in the half-space z=<0. From such a
spectrum, it is then possible to obtaln the secondary field within Tz using
the same transform as described with Egs.(2-4). In the farfield of the
primary beams, the Fraunhofer approximation provides the secondary field
without this latter integration:

[P_(r)] = 515 ™7 lA;';i](l% n)l. (8)

(n = r/r is a unit vector directed along the observed direction)
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NUMERICAL RESULTS

Although the parametric fleld may be computed with Eq.(2) at any distance z
of the transmitter plane, it involves the preliminary computation of a
complete mapping of each spectrum (Eq.7) related the observed plane. So,
these complex calculations can only be undertaken for certain particular
cases. In order to build the set of curves needed to design an optimized
parametric transmitter, it 1s easier to consider only the farfield
characteristics. With the Fraunhofer approximation, only few spectral
values must be evaluated to obtain the on-axis level and the -3 dB
beamwidth. Furthermore, a first approach may consider only circular
transducers, and so takes advantage of the symmetry of revolution: the
primary spectrum is given by a Fourier-Bessel transform.

We focus our Iinterest on a parametric frequency of 15 kHz. The
displayed curves exhibit the expected characteristics of the secondary
farfield, 1.e. the half-power width in abscissa and the acoustic level (dB
ref. 1uPa rms| 1m) in ordinate. Figs. 1-2 show results with transducers
whose diameters are respectively equal to 1.1 m and 1.3 m. Each curve is
computed for a given primary central frequency (35 to 85 kHz by steps of
5 kHz), moving upward along a curve by increasing the transmitted power:
the dashed lines indicate constant source levels expressed in terms of the

pressure amplitudes P°= P.CoV (VD is the velocity on the front face of the

transducer for each primary signal). The effect of saturation is obvious as
these curves are not straight vertical lines.
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We are looking for optimized systems, which means for Iinstance
achieving the highest secondary level with a specified beamwidth. So, for a
given diameter, these best performances are described with the envelope of
the corresponding set of curves. At this point, a new and very practical
result is seen: each optimized performance can only be reached by using a
specific primary central frequency. Fig.3 is built with such envelopes for
various diameters of transducers. A cross array of curves delineates the
average primary frequencies required to obtain these results. The dashed
line array indicates as previously the primary levels. So then, Fig.3 gives
at a glance the farfield performances that can be expected with a 15 kHz
parametric transmitter using a circular transducer, and the way to achleve
them.

ANTENNA BEING BUILT
The specifications of the proJject undertaken in our laboratory can be

summarized as follous:eto generate a 15 kHz radiation with a half-power
beamwidth less than 2, and an acoustic level better than 205 dB. The

N (dB ref.luPa rms)
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Figure 3 - Optimal secondary beams for diameters of 0.4 m to 2.0 m, with
corresponding central frequencies an primary levels.
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smallest diameter required to achieve such specifications is about 1.1 m,
by using a 45 kHz central frequency with Po= 250 mb. The diameter of a
linear transmitter should be greater than 3.1m to achleve t.hg same
resolution. The power output of the transducer is about 2 x 210 W/m" (l.e.
the total power is 400 W), which is not very high: the Goldberg’'s number in
the one-dimension model is around 5 for each primary wave. The equivalent
mean source level is 237 dB (for each primary beam), which glves a
parametric gain of - 32 dB. It is 12 dB below the value computed with the
Westervelt formula. The primary beams are very narrow (1.8 beamwidth), so
that the on-axis level difference (- 12 dB) with the model of Westervelt is
mainly due to the saturation effect. On the other hand, tl'ge parametric
angular aperture computed with the Westervelt formula (1.17) is always
found to be smaller than in Fig.1 even with low source levels (vertical
portions of the curves). This remains consistent with the fact that the
primary wave spreading is not taken into account to compute this value.

The actual shape of the designed antenna is rectangular (1m x 1.4m),
which allows an easier modular building, and reserves the possible future
ability to bring an electronic beam-steering. This device is probably the
only parametric transmitter planned to work with such a small frequency
ratio, i.e. 3, and its construction is primarily intended to achieve the
experimental confrontation with the theoretical results.

CONCLUSIONS

As the flnal characteristics of the parametric beam have the main
significance, it 1s more convenient to express directly the performances in
terms of the avallable acoustic level and the directivity of the secondary
beam. Using these parameters, we have presented a set of curves (computed
with circular transducers) that give the best farfield performances that
can be expected with a 15 kHz diiference frequency. The main result lies in
the fact that any of these optimized points can only be reached by using a
specific primary central frequency. The spatial Fourler analysis used to
derive these numerical results is very convenient through approximations
that it enables. But it has not been found realistic to undertake a huge
exact numerical process involving the numerous space-time modes that
propagate and Iinteract. Instead, certain simplifications based on
reasonable assumptions have been used. Thus, our results have to be
compared with experimental data before completing other calculations with
various difference frequencies and shapes of transducers. It must be
noticed that the method allows also the computation of the nearfield.
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