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This paper describes a matrix method for computing the exact reflection and transmission
coefficients for harmonic plane waves within a stratified medium of homogeneous, isotropic,
and absorbing plane layers. The new feature is that each layer can be either liquid or solid,
whatever their successive order. Furthermore, this algorithm takes into account evanescent
waves, but also applies whatever the thickness of each layer. A numerical example is shown.

PACS numbers: 43.20.Fn, 43.20.B1, 43.20.Hq

INTRODUCTION

The transmission and reflection of acoustic waves in
layered media has been extensively studied. An early paper
by Thompson' (corrected by Haskell? ) and two reference
books™* can be cited. Many other works have followed (e.g.,
Refs. 5-10 include large bibliographies), but none of them
address the case of layered media with any sequence of liquid
and solid layers. However, this issue is of a practical interest
within different domains, e.g., nondestructive testing. The
present paper is concerned with plane layers stacked be-
tween two semi-infinite media, one of which contains an in-
cident wave and a reflected wave. This region will be called
the input. The other semi-infinite medium contains only a
transmitted wave. Hence, it will be called the output. Each
layer and the surrounding as well, are homogeneous, iso-
tropic, and attenuate acoustic waves. They are liquids or
solids of any thickness. Accordingly, the solution given here
may apply to a large range of situations.

Itis known that a harmonic radiation propagating with-
in a homogeneous medium can be analyzed with Fourier’s
formalism as a superposition of inhomogeneous plane modes
(Alais'' ). These modes have a constant amplitude in every
plane parallel to a reference plane. By choosing the planes in
which the decomposition takes place so that they are parallel
to the interfaces between the layers, this invariance remains
when propagating across the stratified medium. In studying
the reflection and transmission of a harmonic beam, the ele-
mentary problem reduces to consideration of such modes
sharing the same wave vector projection K onto these planes
(|K] is a real number). Mackenzie'”> made implicit use of
these modes to deal with the sea-bottom interface, and the
spatial Fourier analysis has been the basis of other related
studies (e.g., Ref. 13) since then. The model described here
is intended to calculate the complex elements of the (4X2)
matrix, M, related to a given projection K so that
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in which (a*, ®) and (a5, ¥) denote, respectively, the com-
plex amplitudes of longitudinal and shear waves in terms of
the velocity potential. The quantities ; and a, are the ampli-
tudes of the incident and reflected waves at the first inter-
face, in the “input” medium, whereas ® and ¥ refer to the
transmitted waves at the last interface in the “output” semi-
infinite medium. The shear wave’s amplitudes (a°, ¥) and
the related coefficients in M, are indeed only used when
relevant, i.e., when the input and/or output medium is a
solid. It must be noticed that the present paper only deals
with the SV shear waves for which the wave vectors lie with-
in the plane of incidence: the SH shear waves are never con-
verted into longitudinal or SV shear waves and conversely,
so that the independent problem of the SH wave propagation
is not considered here.

The theoretical model used here is exact; that is to say
particularly that evanescent waves, i.e., with a large imagi-
nary coefficient of attenuation versus a small propagating
real part of the wave vector, which may produce a significant
effect across thin layers, are taken into account. The way of
writing the equations follows that of Brekhovskikh® and is
based upon handling matrices that transfer velocities and
stresses between interfaces. First, the matrices that are relat-
ed to solids (Sec. I) and liquids (Sec. II) are recalled. This
paper is mainly devoted to providing a method which can
treat any sequence of layers and overcomes numerical prob-
lems that arise for certain cases. The model used to describe a
solid layer in which an evanescent longitudinal wave propa-
gates is emphasized in Sec. III, and specific results with
K = 0 are given in Sec. IV as well. The final stacking of the
matrices which provides the expected results is described in
Sec. V. A numerical example is shown in Sec. VI.

I. SOLID MEDIA
A. Elementary transfer matrix

Let us denote ¢ the scalar- and y the vectorial- potential
fields, respectively related to the longitudinal and shear
waves that propagate in a solid, and from which the acoustic
velocity, v, is derived:
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v = grad($) + rot(y) )

The stress tensor, &, is related to the strain rate tensor, €,
by

o =2ue+ 101, (3)

in which 8 denotes the trace of the tensor ¢, 1 is the unit
tensor, A and p are the Lameé coefficients. We consider only
harmonic (angular frequency ) plane longitudinal and SV
shear waves of which the wave vector and the velocity vector
lie in the same vertical plane. This plane is defined by the axis
Ox (parallel to the interface) and 0z (normal to the inter-
face). Thus the geometry of the problem is reduced to two
dimensions and the only nonzero components derived from
Egs. (2) and (3) are written:

Lo % W

x s Uy s (4a)
dx Jdz dz Ox
(1 denotes here the component )
dv dv
p‘, z
_T R —
=J [é‘z + ax]
2 2 2
_jul, 9% 9 I IFb] (4b)
w dxdz  Ix?
i dv du av
¥ z x z
=T, == +A|—+ ”
7 w [ dz dx oz
_I A 52"’5 +
" [(2M+ ) —=- z’ 2# e az
(4¢)

The volume and shear viscosities of the absorbing solid
are taken into account by using complex Lamé coefficients.
They are related to the complex squares of the wave vectors
k*“ (Jongitudinal) and k® (shear) by

(k") =pw’/(A + 2u) and (k%)* = pw?/u, (5)

in which p denotes the specific mass of the solid.
Considering a given type of wave (longitudinal or
shear), there are two waves whose projection of the wave
vector k onto a plane II, parallel to the interfaces is K: one
which propagates forward (increasing z) and whose ampli-
tude is denoted a , ; the other propagating backward with

the amplitude denoted @ _ (Fig. 1). The projection k, of k
onto the axis 0z is simply related to K with
K =12 + K, (6)

in which k? is given by expressions (5). The only physical
solution is easily shown to be written k, = k, + ja with k,,
a€R *. Using this convention and for a given real vector K,
the potentials ¢ and 1 in the plane [1, which intersects the
axis Oz at the abscissa z are finally written:

é(zt) = [a", exp(jklz) + a" exp( — jkLz)]elK*—n,
(7a)

Y(zt) = [a°, exp(jk3z) +a° exp( —jk3z) )&/~
(7b)

The sum and difference notations are also defined (with
the subscript « standing for L or S):
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FIG. 1. Definition of wave vector components.

FU(z) =a", exp(jkiz) +a“
D(z) =a",
and the matrices of propagation:

e _[CHD SU2)
7 (Z)_-[S”(z) cuzl’ %)

(8a)
(8b)

exp( —jk ;2),

exp(jkiz) —a" exp( —jkiz),

with
C*(z) = cosh(jk iz) =
S(z) = sinh( jk “z)

that give the transfer relation for “ and & from II, to
I, , 4 inside the same solid layer:

7 L
= 6 u
[e@"]z] a f (d)[gu]z

or also

cos(k ;z),

=jsin(k}z),

o) %]
= P"(d i

\-Sﬂu r+d ( ) yu z

From Eqgs. (7a) and (7b) and with the notations (8a)

and (8b), the relations (4a)-(4c) take the following matrix
forms:

(10)

[ 1 L]
;’f _v‘é/ y }ej(Kx—mt)
.w zdz
and
UZ QL N
wT —.,IY;, Sﬂs jeJ(Kx—-.m), [ll}
with
Y [ K — k3 ]
T —pe’C,  — 2pwk3S kS
and
| ki K ]
T = 2p0%k ES /K p0®C

in which the practical notations S = K /k5, C, = 1 — 25?
appear.

By combining the (2X2) matrices .#, and .#,, the
sparse (4X4) matrix .# is built so that:

v, iz
v, gt )

or. | =\ s |7 (12)

wT, |, N P
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whereas the inverse relation is easily obtained for .# ~' by
combining #,; ' and .#, '. The matrices Z%(d) and
25(d) (Eq. 9) are also merged to make, using Egs. (10),
the (4 X4) matrix % (d) such that

s L
@L ‘@L
@S =‘@(d) @S ?
\.?S z4+d yg z
oy P(d) 0 ]
h 2(d) = :
with 22 (d) [ 0 P5(d) (13)

[0is the (2 X2) null matrix].

In a solid layer, the components (v,T) are finally trans-
ferred from II, to I1, , , with the (4X4) matrix 2(d) de-
rived from Eqs. (12) and (13):

v, v,
Uz Uz
T, =a(d) oT, |’
ol |, 4 wT, |,
with[a(d) = 4 X P (d) XA ~']

(14)

[.#,.# ~'and 2 (d) are explicitly written in the Appendix].

From a practical point of view, it can be noticed that
«(d) is symmetrical about its second diagonal
(a;; =as ;5_;)- On the other hand, these transfer matri-
ces are well suited for numerical analysis as it can be seen
that | Z (d)| = 1, so that |2 (d)| = 1 as well. A recent study
by Scharnhorst'* is dedicated to such properties of the trans-
fer matrices in layered media.

The elementary matrix « can be used straightforwardly
as far as the plane (longitudinal or shear) waves actually
propagate. If the value of |K| is significantly greater than the
critical value w/c” (e.g., when a wave occurs from the trans-
mission of an incident wave at a supercritical angle), the
longitudinal waves (a“, and a” ) are then highly attenuat-
ed (hence, so-called evanescent). The elements of the partial
matrix 2 %(d) grow exponentially with d, and the matrix ~
becomes numerically singular. Physically, it reflects the fact
that an evanescent wave cannot propagate across a thick
enough layer: there is not a 4 X4 relation between planes 1,
and [1,, ; asin Eq. (14), whatever the computing precision
used for handling the problem. Similar problems arise with a
normally propagating wave (K = 0). These cases are clari-
fied in detail in Secs. 1l and IV,

B. Stack of layers

Let us consider n contiguous solid layers (Fig. 2), with
tilted modes (K#0) which do not induce the previously
mentioned evanescent propagation in any layer. The thick-
ness of each layer isdenoted d; (i = 1,n). Every layer is then
described by a matrix «,(d;). The abscissa of the interface
between the media (1) and ({4 1) is denoted 2, so that
d; =z, — 2z, _,. The media (0) and (n# + 1) may be either
liquid or solid. The following continuity relations hold on
solid-solid interfaces:
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FIG. 2. Schematic diagram of n contigous solid layers.

G+ )

UK UX

(j+ 1) (1)

uz vz

g+l T 31 (15)
oT! T}

T+ |, 0T |,

If one of the external media (0) and/or (n 4+ 1) has a
solid—liquid interface with the stack, only v,, T,, and T,
satisfy the continuity equation (here withz=2,o0orz=2z,),
T, being null. In every case, the stack of solid layers can be
described with the global (4 X 4) matrix «:

u;fﬂ Uil}

U:n +1 L’;o‘
— o ’

oT{"th oT

(n+1) (0)
(.I!JT_‘ z, &JTX 2z

with | =2"(d,) X - X2"(d,)]
(|| =1 is still true).

(16)

But if the medium (n 4 1) is a solid [resp. medium
(0) 1, the quantity v{" * '’ (resp. v{”) can be used in place of
o™ (resp. v{") as pointed out by the continuity relation
(15).

C. Input and output interfaces

Using the same restrictions as mentioned at the end of
Sec. I A, let us denote the (4X4) matrix %:

1 0 1 0
1 0 —1 0
(& o
0o 1 o -1
o 1 0 1
so that
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pL a", exp( jklz)

DL S exp(jk3.

g =% a-l- Kp(.’ Zz) , (17)
23 a“ exp( —jkLz)

B P a® exp( —jk3z) |,

the inverse relation being derived from % ~'.
When the input medium (0) is a solid, there is on I1,:

at, =at
(n s _ .5
u, a, =a; ,
: K. p?
o =Jffm’><"e’( S . J.e;( x ar)’ (18)
&)Tz a. =a;
mTi” 0 aS— :af 0

in which .# X % is detailed in the Appendix. As previously
mentioned with Eq. (16), this relation (18) is still correct if
the medium (1) is a liquid, here by using v{” in place of v{"’,
this latter value being used if the medium (1) is a solid.

If the output medium (n 4 1) is a solid, a relation simi-
lar to the inverse of Eq. (18) could be used on the last inter-
face (z,) with the matrix % ~'X (.#" *") ~'. However,
the matrix .# ~ ' contains elements in which the inverses of
k “ and k3 appear, which may induce numerical overflows
when |k | or |k ]| are very small. But the definition of the
output medium implies that a“ (z) =0anda® (2) =0, for
any z>z,. Defining

& =a", exp(jklz,) and ¥=d% exp(jkiz,),

(19)
the difficulty can be overcome by noticing that in the medi-
um (n+1), there is (at z,): FL=0, F5 =V,
kYN FE—DE) =0, and k(S5 — D5) =0. Thus the
matrix % ~' can be replaced by the matrix %’ which carries
the transfer

FE FL
2 s
L { L =/Z/'(n+ll “@L s
kz('jé _@ ) QS
kf(ys—gs) z, '-/(/)s Zn
with

1 0 0 0

o 0 0 0 i

“=lkr —kt o o |’ 20
0 0 kS —kS

and thus enables use of the sparser product matrix
%'X.# 'inplaceof % ~'X.# ~', the former remaining
correct even with null k£ Zor & 5:

(%' X.# ~'in the Appendix)

(I) vi'l’+ [}

v jef(l‘(x en) @'X(uﬂ’“"—”)_l g’”

0 T |’
01z T |,

(21
with which the continuity relation v{™ = v{"* *’ can be used
if the medium () is a solid.

1582 J. Acoust. Soc. Am., Vol. 89, No. 4, Pt. 1, April 1991

D. Stack of solid layers between two liquid media

A single solid layer, or stack of solid layers, is supposed
to be described with the (4X4) matrix o/ [Eq. (16)]. The
following indexes are used: (0) and (n + 1) stand for the
liquid media; (1) to (n) stand for the solid layer(s); z, and
z,, are the abscissa of the mixed interfaces (0)-(1) and (n#)—
(n + 1). At these interfaces, v, is not continuous and the
T,’s are null:

oT "+ (z,) =0T (z,) = 0T{"(z,)

=oTP(z)=0, (22)
from which the following can be derived at z = z,:
A ol = — (A 0¥ + A yoT ). (23)

The stack of solids, making a sandwich between two
liquids, can thus be described by a (2<2) matrix, %’, which
acts in a manner similar to the transfer matrix used with
liquid layers that will be given in Sec. II:

(n41) ({4)]
[ Uz ] - .%,[ uz ]
ﬂJT:”+l] 2, mT:‘” 2

with

(24)

Ay — A A o/ A
A g — A A g/ A

Ay — Ay 3/ Ay

B = :
‘&,33 - ‘GZJI ‘af-ﬂ /‘Gf¢l

E. Notes about liquid-solid interfaces

Three comments about liquid-solid interfaces will be
useful in Secs. I1I and IV and must be emphasized here. The
geometry of the previous Sec. I D is used to introduce these
notes.

(1) At the abscissa z,, such a mixed interface implies a
null component 7, . Thus, the fourth column of the matrix
2 [Eq. (16)] is not used to build &'. So, the (4¢3) sub-
matrix made of the three first columns of the (4 >4) matrix
2" related to the first solid layer of the stack is sufficient to
calculate the useful (4>¢3) submatrix of =7

(2) Onthe other hand, the null value of T, at the abscis-
sa z, of the second liquid-solid interface provides a condi-
tion (fourth row of .27) for the vector [v{"(z,), v*(2,),
wT?(z,)] [Eq. (23)]. This allows removing the compo-
nent v{"(z, ) and thus leads to reducing the dimension of the
final transfer matrix 4’ to (2X2). The pertinent fact that
allows this reduction is the existence of a relation between
the components finally transferred [v”(z,), ©T (2,)]
and a third component [v'"’(2,)]. Thus it is not essential
that the first elementary matrix is strictly that one which is
related to the transfer given by Eq. (14),i.e.,2‘"’, but may be
another matrix «''"’ related for example to such a transfer:

U, ay  ap  agy
au
(1) v ’ ’
Uz @3 @3 @z (0)
= v, .
a)T:" “;1 rz;z (1;3 T“"
w
T(l] ’ ’ ] = Bl
wl , 2y agy 77 gy
0y _
(T =0) (25)

in which a" denotes the amplitude of one of the waves that
travel across the medium (1). We take advantage of this
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alternative to process the case of evanescent longitudinal
waves in solid layers (Sec. IIl1). The same reasoning still
applies by using another relation between the initial compo-
nents (here at z, ) than the one that induces the null value of
T, at z,: this condition may be taken as the null value of the
backward wave a” in the output medium, as it happens in
Eq. (21). This variation is used in Sec. V.

(3) It can be seen that the first row of .o is not necessary
to calculate %': the component v, is not continuous at the
abscissa z, . Near such an interface, the matrix describing the
solid part (here the last layer of the stack, i.e., «'™) can be
the (3x4) submatrix composed of only the last three rows.

1. LIQUIDS
A. The transfer matrices

The relations to describe liquids are simpler than with
solids in that the acoustic velocities v are derived from only a
scalar potential ¢, i.e., v = grad(¢). The stress tensor o is
related to the strain rate tensor € by the reduced expression
o= A601 [see Egs. (2) and (3)]. Thus, using the same con-
ventions as in Sec. I A, it follows:

vx=%, v :3_¢, o, =0, =0,
ax oz (26)
LA [3% c?%ﬁ]
zz :Tz = - _+ -
7 / [6‘2’ ax?

It must also be emphasized that T, = 0. The fluid is
viscous, so that the coefficient 4 is a complex number. The
complex square of the wave vector k” is given by

(k5)? = pw’/A. (27)

For a given projection K, the potential ¢ in a plane I1, is
written according to Eq. (7a). It leads to the matrix relation

”z- ‘sﬂL s JUKX — cor
[sz-Z:_/VlQLLjeﬂK )
with
[ 0 kL
A = " ] .
| —po” O

(28)

The inverse relation is obtained with 4" '

Within a liquid layer, the (2X2) matrix 4(d) to trans-
fer from a plane I1, to a plane I1, , , is finally written:

or] .= 4@or]
sz z+d_ .ﬁ( ) mTz z‘

with[£(d) = /X P d)x "' |

(29)

[the matrices.#”~ ' and 4 (d) are detailed in the Appendix].

B. Input and output interfaces
Let us denate 7 the (2 2) matrix so that at I1,:
Fr a" exp(jkIz) 1 1
[’w]=7/[; PURE 1 with :z--"=[ ]
Dl a“ exp( —jk:z) 1, 1 —1
(30)
The inverse relation is obtained with 7~ .
If the input medium (0Q) is a liquid, it gives
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Ui” V{O] ﬂ!_"_ = af_ JiKx 1)
_— * — &,
T o X7 L _ L Je ’
@ 0 a =4a, ]y

- r

kKt —kt D

—po’ - pa’
If the output medium (# + 1) 1s a liquid, there is by
definition  a“ (z2) =0  (z»z,). Denotmg ¢

=a% exp(jktz,), one could write a relation which asso-
ciates (v, wT (") with ($,0) at z,,, as the inverse relation
of Eq. (31) by using "~ 'X (4" *Y) "' But the same
difficulty as mentioned in Sec. I C may occur when |k |
vanishes. The problem is still solved by noticing that into the
medium (n+1), at z=2z,, we have ‘=& and
k5t — 2") = 0. Thus, the matrix 2 can be taken in
place of 7"~ ' to provide the following transfer:
PEQN
kA — I8 )., grl:

with

., 1 0
7/ = k.L ___k!. ’

so that it leads to the relation that is correct in all cases:

(32)

(n}
z

(n)
z

q>] ket o [ ]
x — ] ;Z rx L{V{H-} 13 1 33
[0 zuje ( ) CL)T z, ( )

(7" X"~ 'is given in the Appendix).

C. Stack of liquid layers and solids surrounded by
liquids

Let us consider # contiguous liquid layers, each of them
with the related matrix £, (d;) (same sketch as Fig. 2). The
media (0) and (n + 1) can be either liquid or solid. At the
interfaces (i + 1)-(r), the following relations of continuity
are always true:

G4 1) — )
T, =wl"=0

and

(at z;)

U£I+1} [ UEI} ( 0 )
= ) i=0,n).
oT{ 0], wT!"],,

In all cases, the stack can be characterized by a global
(2% 2) matrix 4 such that

lJirr 1) L’Em
-3 -
- ¥
wTén+ [B] z &JTEG) 2

with [ 2 = £7(d,) X X4 (d,) |,
(35)

(34)

with the additional conditions: T (" * V|, =T "], =0.

On the other hand, it has been seen in Sec. I D that a
stack of solid layers surrounded by two liquid media is de-
scribed with a global (2 2) matrix %' [Eq. (24)]. These
solid stacks can then be naturally inserted as pseudoliquids
in the liquid stacks, by associating these matrices %' with
the #”s to build the global matrices % [Eq. (35)].
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lil. EVANESCENT LONGITUDINAL WAVES IN SOLID
MEDIA

The so-called evanescent longitudinal waves occur
when the vector K is so large that solving Eq. (6) leads toa
value of k2 =k’ + ja" that is mostly imaginary, i.e.,
a”> kL. It must be emphasized that the basic process for
solid layers described in Sec. I A still applies if the thickness
of the solid layer, 4, is small. The present method must only
be undertaken if the condition exp( — a’d) €1 is met, i.e.,
the amplitude coefficient due to the absorption is vanishing.
Hence, the transfer matrix z(d) becomes singular. The
physical meaning of the singularity is the lack of causality
between the mechanical state of the face z 4+ d and the
evanescent wave @, starting from the interface z (and con-
versely between the mechanical state at z and the backward
wave a“ ). There is no way to overcome this problem by
increasing the precision of the computations. As far as there
is no physical meaning in considering transmitted evanes-
cent waves whose amplitudes are far beyond the range of
precision of the machine, it can be said that the results ob-
tained by using the method presented here are exact.

The solid layer, of which the bounding abscissa are de-
noted z and z + d, is described by a sequence of three matri-
ces: a central (2 2) matrix which transfers the fictitious
components v’ and T! of a pseudo-material propagating
only the shear waves actually traveling between interfaces z
and z+4d (no longitudinal waves into this material:
a , = a“ =0); and two matrices linking these fictitious
mechanical states with the actual values. These matrices
must be packaged (1) to remain compatible with the sur-
rounding media, (2) so that the central matrix can be “seen”
as that of a liquid.

A. The central matrix transferring the shear waves

The (2X2) matrix £ which associates the fictitious
components (v!,wT!) on both faces of the layer is derived
first. These mechanical values are related only to the present
shear waves, whereas the (evanescent) longitudinal waves
starting from the interfaces are omitted. Within every plane
I1, into this pseudolayer, the (2X2) matrix.#" is extracted
from .# [Eq. (12)] by taking into account ¥~ = 2 =0:

3] -5

z =" ) -ej(Kx—wﬂ’
[&JTi_ . 7517

with

(36)

[ o k
N= | — 2uk 3K 0] )

Thus, using 4" ~ ! and the propagation matrix Z° [ Eq.
(9)1], one can build the transfer relation between II, and
[T

z4d"

], el 2]
oT ], 4 (@ oT!]),

with [£°(d) = N"X ZS(d) XN " |
(37)

(.#"~"and 4" are given in the Appendix).
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B. Matrix related to the input of the layer

The interface located at the lowest abscissa, 2, is referred
here as the input side. By using the third and fourth rows of
the matrix .# !, the actual mechanical components into
this plane (solid layer side) are associated with (25,.75):

iq jej(Kx—anr)
u
_& 0 ______K 0 -
kf P&)Zkf v,
= T,
o = 9 |
po* 1| oT, |,
(38)

Then, two relations between the actual components and
the fictitious values v., T"! are derived by linking Eqgs. (36)
and (38). A third relation between the actual mechanical
components can be deduced by noticing that there is no
backward longitudinal wave into this interface (by hypothe-
sis, the wave a” starting from I1, , , is evanescent and can-
not reach I1,), so that £~ = 2 *. Thus the last row of this
input matrix is filled with the relation obtained by equating
the two first rows in the inverse relation of Eq. (12):

28 G 1

—_—y, ———v, — oT, +
s % L Z 2 z 27, L
k k-

paw pa’k

which is then formally compatible with a null component 7',
in the pseudoliquid that describes 4 in Sec. III A. Finally,
the input interface matrix «; makes the transfer (z; in the
Appendix)

oT, =0, (39)

v O

T: 1 40
@i, =ajy sz ( )

0]). oT. |,

The size (3 X4) of z} is sufficient to deal with all cases
[note (3) in Sec. I E] because the solid pseudolayer (with a
null thickness) that this matrix describes is followed by a
layer formally processed as a liquid with the (2<2) matrix
¢'. When the previous medium (abscissa lower than z) is a
liquid, the matrix «; is reduced to the (2<2) matrix 4 j by
using the method described in Section I D because the pseu-
dolayer («;) is then formally surrounded by two liquids:

v v 0
z = & ‘ § i p — ZCZ
[mT'] J@IL)TZ ) with 2 pot:
zd2 kf_
(41)

C. Output transfer matrix

On the other interface (i.e., the plane 1, , 4, solid layer
side), the hypothesis is now @*, exp[jk (z+d)] =0, so

that L = — 2" This condition leads to the following de-
duction from the two first rows of .# ~ !
C.
kgs-ux +k—iu, — lz T, — [ka wl, =0. (42)
z P&) Pa" z
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On the other hand, according to the definition
(FL =G =0) of the fictitious components v’, v}, ©T!,
and wT!, Eqgs. (11) give

vl = (k5/2p0*S)0T. and oT' = (po’/K)C,vl,

(43)
and also, by separating the contribution of the longitudinal
wave,

v, v
T, | wT!
oT, ). 4 “’Ti 2+ d
- kT
Kkt
+ | —pa*C, ab e HiGHd (44)
2Pm:SkL
ks

Finally, assembling Eqs. (42)-(44), the output matrix
ay of the layer is written (2 in the Appendix):

v, ,
a“ exp[ —jki(z+d)]
v, = a2’ vf
= a}, ;
&JTZ GJT; z4d
MTx_ z+d i

(45)

As this pseudo solid layer is preceded by a fictitious me-
dium which looks like a liquid with ', the two first notes of
Sec. I E apply and show that the reduced size, (4X3), of 2
is sufficient, and justify the choice of the transferred compeo-
nents as well. In a similar way, as in Sec. III B, the method
described in Sec. I D applies when the next layer (abscissa
greater than z + d) is a liquid: The matrix «; is reduced to
the following (2 X2) matrix:

v, v,
=2y _° with 2
sz z+d &JT: z+d
1
282
po’C}
282k £

0

(46)

IV. NORMAL ANGLE OF INCIDENCE (K = 0)

When the direction of propagation is normal to the in-
terfaces, the matrices .# , and .4, [Eqgs. (11)] only have
nonzero elements on the first and second diagonals respec-
tively (K =0,8=0, [C, = 1]). Thecomponents v, and T,
only depend on the longitudinal waves whereas v, and T,
only depend on the shear waves. These shear waves are a
special case of SH type waves, and are completely indepen-
dent of the longitudinal waves. As the present paper is not
concerned with this problem, the only elements of M, [Eq.
(1)] that are calculated if K = 0 are M, and M, , recalling
that M, =M,, =M,, = M,, =0. The two coefficients,
M;, and M,,, are not computed in this case.

1585 J. Acoust. Soc. Am., Vol. 89, No. 4, Pt. 1, April 1991

Thus the matrices describing the solid layers are here
reduced to a (2X2) dimension, as are the ones related to
liquids: If the input medium is a solid, a.#" X 7"-like matrix
[Eq. (31)] is still written, as is a 77 X4~ type matrix
[Eq. (33)] at a solid output; all layers are also described
with liquidlike matrix Z [Eq. (29)]. The ordered product
(input-layers—output) of all these (2X2) matrices is a glo-
bal (2X2) matrix, from which a partial inversion finally
gives the desired coefficients M,, and M,, (see the next sec-
tion).

V. LINKING
A.First steps

Summarized below is the sequence of the first opera-
tions to perform.

(1) Calculate the input matrix, .# X % [Eq. (18)] if
it is a solid, 47 X 7" [Eq. (31)] if it is a liquid (or a solid
with K = 0).

(2) Calculate the matrices related to each layer. The
liquid (or solid with K = 0) layers are characterized by 4"
matrices [Eq. (29)]. Each solid layer (K #0) is described
by an ‘" matrix [Eq. (14)], unless it is a sequence of three
matrices in the case of over attenuated longitudinal waves:
2} [Eq. (40)] or ;" [Eq. (41)], £'" [Eq. (37)], and
ay'”’ [Eq. (45) ) or 2" [ Eq. (46) ], the choice of the matri-
ces being used, =’ or %', depending on the liquid or solid
nature of the contiguous media.

(3) Calculate the output matrix: %' (.#"*") !
[Eq. (21)] for a solid (K #0); "X (4" *") ' [Eq.
(33)] when K = 0 or the medium is a liquid.

(4) Calculate the products of all the similar contiguous
matrices. It gives .o/ matrices [Eq. (16) | with the solids, %
matrices [Eq. (35) ] with the liquids. It can be recalled that
MXU, a,a',and %' X # ' matrices [Egs. (18), (14),
(40), (45), and (21)] are all compatible, and A" X 77, £, &',
A', and 77X A" types [Egs. (31), (29), (37), and
(33)] as well.

(5) Reducing of the liquid-solid-liquid sandwiches,
providing 4’ type matrices [ Eq. (24)]. If needed, a second
pass performs the products of (2 X 2) liquidlike contiguous
matrices that may remain after this step.

B. Final processing

No more than three matrices can be left after completing
the steps of the previous Sec. V A. The simplest cases occur
when there is only one matrix, % (2X2) in case 1 or
27(4%4) in case 2. When two matrices remain, there is one
of each type, % and 5. Two cases, depending on the input
and output media may be encountered (cases 3 and 4). A
last possibility may be found when the input and output me-
dia are both solid, and at least one layer is a liquid or equiva-
lent (solid with evanescent longitudinal wave). A sequence
of three matrices, #%°,, %, and %, must then be linked
(case 5).

Case 1: Liquid input-[any layers]-liquid output, or
K=0.

The partial resolution of
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ak

[o] =L

0 ar
gives

MEM !

Within every other case (2-5), there is X #0.

Case 2: Solid input-[solid layers (with transmitted lon-
gitudinal waves) |-Solid output.
The partial resolution of

L
(6} a;

e T I <]

Case 3: Solid input-[any layers]-liquid output.

at

v, s

P] g[“] d ot |=o7|”
— T = s

0 oT, and | @2 at

aS

where 7 is the (3 4) submatrix of 7 (see note 3 in Sec.
IE).
Building the (3 X 3) submatrix %’ from & so that

0
G = [9] of,
0 0 1
it gives
at
P a5
0|=9"%xx#| |,
a
0 r
a;
from which

L a;
a' | =M, M, o5
a‘f M, M, ll

can be derived.
Case 4: Liquid input-[any layers]-solid output.
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coe o

where 7#” is a (4X3) submatrix of 2 (see note 2 in Sec.
IE) and

[m] gaf
oT,| 7 |lat)”
One of the two last rows within the first matrix equation

enables the elimination of the component x, and thus build-
ing a (3X2) matrix & which can be linked with %:

o ot

v :ﬁ*""x:’f[ L]

0 e
which gives

(D M{]

ay | =| My |[af]

v M,,

Case 5: Solid input-[any layers]-liquid layer (or solid
layer with no transmitted evanescent longitudinal waves)—~
[any layers]-solid output.

The central block can be written in the form

v? vl
ore]=#L7.]
oT? oT?

whereas the input and output blocks are respectively writ-

ar
a
)
z a;s'
a — ’
T | =, .|
ar
0 s
a’

where 77 is a (3 X4) submatrix of #° (see note 3 in Sec.
IE), and

@

v x
0 =.%’JE, v, ’
0 oT,

where 7#7} is a (4X 3) submatrix of #° (see note 2 in Sec.
1E).

As previously in case 4, the component x is eliminated to
build the matrix 7#°; which is combined with % and 7, to
make

[Fix %]

X H

oo e d
-0 O O
2 1> =] [~
T Y S T

00

the resolution of which gives
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It may be noticed that the first four cases treat also the
simplest combinations in which there is no stack of layer at
all (single plane interfaces between two semi-infinite me-
dia).

There is a last numerical difficulty which may occur if
the coefficients of transmission (M,,,M,,, M, ,M,,) are
very small. In that case, the reflection coefficients must be
calculated by limiting the number of layers taken into ac-
count: The only retained layers are the first m ones, counted
from the input. The last (mth) layer is the first one to verify
<" Re[exp(jk *"d,) ] €1 [u stands for L with liquids, S
with solids; Re( ) means the real part of.( )].

The other layers (i > m) are not taken into account, and
the mth layer acts as the output medium. The only signifi-
cant coefficients are (M,,,M,, M,,,M,,) whereas all the
others are assigned a null value.

8
Sl

VI. APPLIED EXAMPLE

This example considers a longitudinal wave transmitted
into a simulated kind of ‘“‘araldite,” at v=2.3 MHz. We
have been only interested with the evolution of the coeffi-
cient of transmission M,, versus the angle of incidence 6,
[K = (2mv/c(?) sin 6, ]. The sequence of media is as fol-
lows (using the notations: k “ = 27v/c, + ja,, u = L,S):

solid input (0) (araldite): p = 2000 kg/m’,
¢, = 1800 m/s,
a, = 1000 dB/m,
¢ = 1000 m/s,

ag = 1000 dB/m,

liquid layer (1): p= 1140 kg/m’,
d =0.05 mm,
¢, = 1100 m/s,

a, = 1000 dB/m,

wh

I
4

o [ " " aagle of incidence

FIG. 3. Solid input-liquid layer (0.05 mm)-steel (6.3 mm }—water.
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FIG. 4. Solid input-steel (6.3 mm )—water.

solid layer (2) (steel): p= 7850 kg/m’,

d = 6.3 mm,

¢; = 5500 m/s,
a, = 10 dB/m,
¢s = 3150 m/s,
ag =10 dB/m,

liquid output (3) (water): p= 1000 kg/m’

¢, = 1450 m/s,

The result displayed in Fig. 3 is significantly different
than in Fig. 4 for which the thin liquid layer (1) has been
removed. The difference is due to the strong alteration of the
tangential mechanical components due to the presence or
absence of this layer. It can be noticed in Fig. 5 that a simula-
tion including a liquidlike araldite input, without the liquid
layer (1), gives a very similar resuit as the one in Fig. 3.

VII. CONCLUSION

The model presented here is suitable to deal with plane
waves across plane layered media. The method of writing the
expressions is developed keeping in mind the numerical
problems involved during the actual processes, and these
relations have been fully detailed. The easier case of the SH
shear waves has not been taken up. A short example has been
displayed, but much more complicated stacks of layers can

YN L

W angle of incidence

FIG. 5. Liquid input-steel (6.3 mm)-water.
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be processed, and the transmission and reflection of com-

28
adl 0 -
plete fields can be undertaken as well, by using Fourier’s kS pw* 0
formalism within the spatial frequency domain. C, K
0o = 0 -
kL kL
APPENDIX = . . P
The following notations are recalled: S=K/k?%, — i, 0 - 0
C, =1-28% ks pork;
o = o L
_ L k po”
[ K 0 — k3 0 These additional notations are used to compress the next
0 k’ OZkSS K matr;cgs; k5SS, ot —=kESE,
M =| —puic, 0 _% , L5=SS/kS, and o/*=S"/kE.
2 Lg It must be noticed that «/“(z) = j sin(k “z) /k ! takes the val-
0 _ kS 0 p0?C, | uejzwithk =0 (uin placeof LorS). [S5CECS,SS: See
5
. k 4 Egs. (9]
- s -
C,CS+25°C* KCyutt — 27
k C5-Ct KMty S
L 3 )
- (KC;JS— 2‘1’: ) C,C"+25°C* 2;;" 5 pe
K + 22
o= . e O
, cS_crt of s 452, pa}z 24 13 ’
2pw*SC, —p?| C3 " +
kS (ks)z -2{33_—"“’22 A =
L — —
Pﬂ’z(ciffs*'ti;;) A = A 3, Y= Y=
T K kS K kS T
kL K —kE K
’k3S 2k SS
MXU=] —pa’C, —%s— —po’C, ZPa;sz '
2p0°k LS 200°k LS
—_— k 5 pa.’zCz ks P(LJZCZ
= 0 - " 0 P pa’
] 3
o = 0 ! ket
Y # ! k ’ pcoz n"
‘XM= L L , ct S
25k k
s TG —— K: ¢ = po’ |,
. Pfﬂ pﬂ) _ Zdtl, CL
28k K k? P 1
(o P o o 0 — P
B - y' ><-/’/‘_ ! = k F A ?
-1 ——=
P
kS '
ot 200°k 35S
. 1 0 , 0 252 0 Kz
K pa
k52 /5 200°C, S
cs _ (kD) aj=|—5— O 252 0
, 200" k
s s | 3 G 1 Kk
(k5)? | K° K p*  pa’k ;|
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