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Summary
This paper addresses the modeling of parametric transmission by means of the Fourier formalism. This approach
is very convenient to understand the influence of the parameters that compete to shape the secondary fields. Non-
linear interactions are described with the second order approximation. Finite amplitudes are taken into account.
The model can handle a large range of antennae geometry. The secondary field is obtained at any distance of the
projector. The effect of difIraction, attenuation and saturation are discussed. A comparison between numerical
results and experimental data is shown. Charts have been computed to optimize a parametric antenna.
PACS no. 43.2S.Lj

1. Introduction

Several difficulties may arise in the modeling of paramet-
ric transmission under actual operating conditions. For in-
stance, the acoustic field of interest can be at any finite
distance with respect to the characteristics lengths of the
primary field; the source level can be high enough so that
the primary waves undergo a significant saturation phe-
nomenon; the primary beam patterns may have a criti-
cal effect. This paper overviews the interest of the spa-
tial Fourier formalism to handle these problems. The gen-
eral model that is built enables to overcome most restric-
tions on the antenna geometry and the distance of obser-
vation. This approach is very convenient to understand the
influence of the parameters that compete to shape the sec-
ondary fields.

The principle of parametric transmission, and the main
ideas that support the developed models in this domain are
summarized in section 2. The modeling of parametric an-
tenna by means of the Fourier formalism is fully detailed
in section 3. The quasi-linear model and the interactions
of finite-amplitude waves are both addressed. Numerical
results obtained after these theoretical models are com-
pared with experimental data in section 4. The design of
a parametric antenna is addressed in section 5. The typical
behavior of the secondary field that is created in the quasi-
linear condition is analyzed. The effect of diffraction is
discussed. Charts computed with the complete model that
takes into account saturation are exhibited. These results

show how an optimal choice of parameters can be derived
to design parametric antennae.

2. Fundamental in parametric transmission

Since Westervelt released the original principle of the
parametric transmission [1], many models have been pro-
posed to describe the radiated fields. Several comprehen-
sive reviews are available, e.g. [2, 3]. The basic principle
of the parametric transmission is to transmit simultane-
ously two primary beams. The non-linear interaction of
these fields creates waves at frequencies which are lin-
ear combinations of the primary frequencies WI and W2.

The wave of interest is at the difference frequency w_
= W2 - WI. Waves at higher frequencies undergo larger
viscous attenuation so that they are more likely to van-
ish at lesser distances of propagation. The main advantage
of the parametric transmission is that this so-called sec-
ondary field can be a narrow beam, hence obtained with a
physical antenna whose size is not very large compared
to the corresponding wavelength. Other benefits are the
potential large frequency bandwidth reachable with such
transmitters, and the low level of the possible sidelobes in
the parametric field. However, a significant drawback is
the poor efficiency of the non-linear conversion. Unfortu-
nately, increasing the source level leads to a saturation phe-
nomenon that reduces both the parametric gain and direc-
tivity. Hence, the design of an efficient transmitter involves
a delicate balance of the parameters of the antenna with re-
spect to the required characteristics ofthe secondary beam.

Within the frame of binary non-linear interactions, the
wave equation reads in term of the acoustic potential ¢,
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The left side of equation (1) is the classical d' Alembertian
operator in absorbing media:

(
b 82) 1 82•0'(.)= 1+--2-82 V2.-2-82,Poco t Co t

(2)

Primary level
(with linear attenuation) a

where Po, co, and b are the fluid density, sound speed, and
dissipation coefficient, respectively. Note that the coeffi-
cient of linear absorption, a, at a given angular frequency,
w, is related to these parameters via

I.••.···'i · -::=:>
End fire array .7
Secondary field---

The right side of equation (1) is a quadratic source term
defined by:

where (3 = 1 + B /2A is the coefficient of nonlinearity.
In the quasi-linear theory, it is assumed that: 1) the pri-

mary waves cPl,2 obey the linear wave equation; 2) the sec-
ondary wave cP- is created by the interaction of the only
pnmary waves:

b

.............
(with linear absorption
plus extra attenuation)

~-~':-~f'~ '-.--....-.-.--.---.--.- ..--.. .,-_ ..._._.- ....-._.~.._-"--"- _._._-"-"--_._---_. __ ..__ .._~."..,_.._,-_ ..••/

End fire array ~
Secondary field

Figure 1. a: Scheme of the Westervelt model. b: Interpretation
through the Westervelt model of the effect of saturation.

(3)
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O'(cPl,2) = 0,

O'(cP-) = S-(cPl,cP2).
(5)

(6)

Note that S in equation (4) addresses all combination of
frequencies, whereas the source function S_ in equation
(6) is restricted to the interaction that yields the difference
frequency component.
The many models that are proposed in the quasi-linear

theory differ essentially by the way they describe the pri-
mary fields and simplify the source distribution that equa-
tion (5) implies.
The Westervelt model exemplifies the principle of the

parametric transmission (Figure la). The source volume is
in fine interpreted as an end-fire array whose length is only
limited by the linear absorption. Such geometry yields a
beam pattern that is devoid of side-lobe. In addition, the
directivity is proportional to the square root of the array
length. An approximation of the half-power angular aper-
ture in the farfield is

"vs II<::::::::- =====". .
Ro

Figure 2. Example of a composite source volume model.

The validity of this model depends on the size of the an-
tenna. The Rayleigh length gives the typical distance of
the transition between the nearfield and the farfield:

(9)

where A_ is the secondary wavelength; the virtual array
length is commensurate to the absorption distance defined
by:

The Westervelt model emphasizes the role of linear at-
tenuation. Because the primary field is described by col-
limated plane waves, the implicit hypothesis is that the
whole source volume is located in the primary nearfield.

2{L
2Bw = V7f V z;: (7)

In the Westervelt model, the surface of the antenna, S,
must be large enough so that the relationship La < Ro
holds. An extreme opposite situation occurs when La »
Ro: Primary fields diverge, and the source volume is mod-
eled with a cone [4]. Intermediate configurations have
been also largely studied, e.g. [5, 6, 7]. For example, the
nearfield portion involves plane, collimated waves, and
the remaining part is described with spherical waves (Fig-
ure 2).
Besides the linear attenuation and the shape of the an-

tenna, saturation is the third main factor that can play an
important role. In that case, the hierarchy that equations
(5), (6) impose is no longer valid. The only global equa-
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tion (1) must apply. The characteristic length for saturation
is the shock formation distance,

l

s

�

c

�

	 �

� � �

M

� (10)

where M denotes the Mach number. The Gol’dberg num-
ber characterizes the relative influence of saturation versus
linear absorption,

	 � l

a


 l

s

� (11)

Note that the Westervelt model provides also a very in-
tuitive picture of the effects of saturation: As the primary
level increases ( 	 � � ), the temporal spectral spreading in-
duces an extra-attenuation that reduces the relative length
of the end fire array. Consequently the secondary beam
pattern broadens (Figure 1b).

Actually, equation (1) cannot be handled directly. The
current approach is to consider that most part of the field
at the difference frequency is created by the interaction
of the only primary waves, i.e. equation (6) still applies.
However, the finite amplitude of the primary waves must
be taken into account. The extra-attenuation can be eval-
uated by solving the global equation (1) in a 1-D model
from which the relative evolution of each primary compo-
nent along the direction of propagation is extracted. For
example, Moffett and Mellen [6] use such a method. They
introduce a taper function in a description of the source
volume that is similar to the scheme depicted in Figure 2,
but for a continuous transition between the plane zone and
the spherical zone.

The previously mentioned models are based on straight-
forward assumptions in the source distribution. Other
models attempt to refine the description of the primary
fields. One way consists of evaluating the primary beams
by using Green functions [8]. Numerical simulation can
be also built with the finite-difference approach based
on the KZK equation [9, 10]. Significant results concern
the harmonic generation in sound beams, and the distor-
tion of pulse waves, obtained by means of analysis in
the frequency domain [11] and the time domain [12], re-
spectively. Another technique consists of using the spatial
Fourier decomposition into plane waves [13, 14]. This for-
malism is well adapted to analyze the interactions of the
primary fields as a secondary source. This latter method is
applied in the present paper.

3. Spatial Fourier analysis

3.1. Linear propagation

Let us consider a harmonic acoustic field, g � r � t � �

G � r � e x p � � j � t � , that propagates linearly in a viscous fluid
towards the direction z � � (notation of coordinates is in-
troduced in Figure 3). There is no source in the half space
z � � .

The spatial Fourier analysis breaks the field as a sum
of plane waves [15]. The decomposition is performed in

z

q

m

r

z

0

P z

P 0

Figure 3. Notation of coordinates with respect to the reference
plane.

the reference plane 


�

� z � � � . Let us consider the inho-
mogeneous plane modes [16], at the angular frequency � ,
whose wave vector k

�

� k � j � � 
 c o s � � e

z

is complex:

L

� � f

� r � e x p

�

� j � t

�

� e x p

�

j k

�

� r

�

e x p

�

� j � t

�

� (12)

The real part k of the wave vector k

� is such that k �

� 
 c , k � k

z

e

z

� � � f , and s i n � � � � f 
 k (Figure 4).
Vector k makes an angle � with the z -axis; its component
in the reference plane defines the spatial frequency vector
f ; its projection along the z -axis is k

z

�

p

k

�

� � �

�

f

� .
Taking into account � 
 k � � and excluding far off-axis
modes – i.e. there is no c o s � � � – it can checked that the
wave vector k

� obeys the dispersion law associated with
the equation of linear propagation in absorbing media:

�

� � � j

� c

�

�

�

k

�

�

�

�

�

c

�

�

� � � (13)

Equation (12) can be written

L

� � f

� r � m � z e

z

� � H

z

� � � f � e x p

�

j � � f � m

�

(14)

with

H

z

� � � f � � e x p

�

j k

z

z �

� z

c o s �

�

�

H

z

� � � f � is the linear operator of propagation from plane



�

to 


z

. Equation (14) shows that the inhomogeneous
plane modes are compatible with the Fourier formalism:
Within each plane 


z

parallel to the reference plane 


�

,
the signature is harmonic ( � � f � m ), and the amplitude is
a constant, j H

z

� � � f � j .
Hence, the distribution G of the acoustic field in the ref-

erence plane can be expressed by means of the decompo-
sition

G � q � 


�

� �

Z Z

A

�

� f � e x p

�

j � � f � q

�

d f � (15)
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Equiamplitude plane

With a baffled plane antenna, the velocity spectrum is
completely defined in the reference plane by the Fourier
transform A(f) of the aperture:

(23)

where va is the maximal magnitude of the normal velocity
on the surface of the antenna. Notice that A(f) may take
into account any beam steering or shading of the aperture.
With a piston-like transmitter, this function is the mere
Fourier transform of the pupil area.
Using equations (21), (22), (23), the Fraunhofer approx-

imation (19) becomes:

Figure 4. Inhomogeneous plane mode.
P( ) = R exp(jkr-ar) A(m)
r a ., "JAr Ar

(24)

with Po = Pocovo.

so that conversely

On the other hand, v = grad( ¢) so that Vz = 8¢/8z and
¢i = A~~2i(fi)Hz(wi,fi)exp(j27rfi'm)exp(-jwit),

i = 1,2. (25)

3.2.1. Nonlinear interactions in the quasi-linear approx-
imation

Let us consider the interaction of two modes correspond-
ing to the couples (WI, f I) and (W2, f 2)' Within the frame
of the quasi-linear approximation, the primary modes are
not altered by saturation (equation 5) so that they can be
written:

3.2. Parametric transmission

With a parametric transmitter, two primary fields at angu-
lar frequencies WI and W2 are generated by the antenna,
which is assumed to be located in the reference plane. The
acoustic field in this plane can be represented in terms of
potentials with two spectra A~~21(f) and A~~22(f). Be-
cause of the nonlinearity of propagation, the primary spec-
tra no longer follow the simple evolution given by equation
(17). Acoustic radiations at linear combination of WI and
W2 are created. All the corresponding modes interact. With
parametric transmission, we are interested in the spectrum
corresponding to the wave created at the difference fre-
quency w_ = W2 - WI.

Using the quasi-linear model (section 3.2.1), the pri-
mary waves are assumed not to be altered by the nonlinear
interactions so that these fields can still be described with
the linear model. In addition, following equation (6), the
secondary wave is fed by the interaction of the only pri-
mary waves. In that case, the elementary problem reduces
to the nonlinear interaction of two inhomogeneous plane
waves at frequencies WI and W2. It is then straightforward
to derive the complete secondary field by integrating over
the whole set of interacting pairs of modes. Approxima-
tions are derived in the paraxial case in Section 3.2.2, or
for large antennas in section 3.2.3.
The finite amplitude case is treated in section 3.2.4 by

introducing a taper function in order to describe the evolu-
tion ofthe primary spectra. This taper function is evaluated
through a ID model.

(22)

(20)

(21)

(17)

Ao(f) = Jko G(q) exp (-j27rf·q) dq. (16)

In order to estimate the farfield, the Fraunhofer approxi-
mation yields straightforwardly from the initial spectrum:

G(r) = j;:'2 exp (jkr - ar)AoC;;)· (19)

In the paraxial case, the last, second order term can be ne-
glected. In addition, the viscous term can be also omitted
because attenuation is negligible over a wavelength like
distance (al k « 1). Hence, the relation between potential
and pressure spectra reduces to:

The spectrum of G in any plane ITz:2:o is thus obtained with
the product

The spectrum Ao (f) is the spatial Fourier transform of G
in ITo:

8¢ Po [ 2 1 (8¢)2]P = -Po- + bb..¢ - - (V¢) - - - .
8t 2 c6 8t

G represents either the acoustic potential ¢, pressure p, or
the z-componentofthe velocity Vz. The associated spectra
are denoted A (q,) , A (p) and A (v) , respectively. The relation
between p and ¢ reads at the second order:

G(r = m + zez) =J J Az(f) exp (j27rf·m) df· (18)
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The source term in equation (6) reads:

S

�

� �

�

� �

�

� �

�

c

�

�

�

� t

�

r �

�

�

� r �

�

�

B

� A

�

c

�

�

� �

�

�

� t

� �

�

� t

�

� (26)

that expands into
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Invariance of equation (27) in any plane 


z

implies that
the created field can be expressed as the inhomogeneous
mode associated to the couple � �
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� , but with an amplitude A
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that depends on z :
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with H
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Note that the evolution of A

� � �

� � �

�

� f

�

� z � after propagation
along a distance commensurate to the wavelength 
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is
very slow compared to the z -dependence of H
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� �
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� .
This translates into the following relative orders of magni-
tude:
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Hence, after introducing (28) in equation (27), and tak-
ing into account the approximations derived from (29), one
obtains the first order differential equation:

d A

� � �

� � �

�

d z
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with c o s � � k

�

� k

�


 � k

�

k

�

� . The global attenuation coef-
ficient is:
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� � k � � r is the phase difference between the source and the
created mode. Actually, this phase mismatch is the funda-
mental origin of the parametric directivity. The non-linear
generation of the secondary wave is a cumulative process
that is constructive only if the phase rotation is small. Be-
cause f

�

� f

�

� f

�

, notice that � k is oriented along the
z axis (Figure 5):
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The contribution of both primary modes � �

�

� f

�

� and
� �

�
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�

� to build � �

�

� f

�

� is given by integrating equa-
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2πf2
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( )
z
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ψ
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Figure 5. Decomposition of the wave vectors of two interacting
modes.

tion (30) along the z -axis from the reference plane up to
the observation plane:
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At far range, the kernel I does not depend any more on z :
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The phase shift is null ( � k � � ) if and only if the primary
wave vectors k

�

and k

�

are collinear ( � � � , so that k
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). In that case, the nonlinear interaction is fully
constructive.
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.
Let us now consider the complete primary field trans-

mitted by an antenna located in the reference plane 


�

.
The corresponding primary spectra in that plane are given
by A

� � �

� � �
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� f � and A
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� f � . The component at the spa-
tial frequency f
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of the secondary spectrum is thus ob-
tained by integrating equation (33) over all the couples
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� . The calculation can be centered on
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with
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Note that A
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� is the spectrum that corresponds
to the secondary field built in the plane 


z

. However, this
spectrum is referenced in the plane 
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. The secondary
field in the plane 
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is thus obtained with:
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In the farfield, the Fraunhofer approximation (19) ap-
plies with the spectrum (37). Hence, it gives directly the
field without needing any inverse Fourier transform.

There are several advantages in using the Fourier for-
malism to model parametric transmission. From a practi-
cal point of view, the numerical implementation of equ-
ation (37) is eased because the domain of integration
that gives a significant contribution is limited around
� f

� �

� f

� �

� and its extend can be readily monitored with
equation (34). In addition, the only requirement concern-
ing the description of the primary fields is that the ini-
tial spectra can be defined in the reference plane: it al-
lows to consider many antenna settings, e.g. any plane or
quasi-plane geometry, taking also into account beamsteer-
ing and aperture shadowing. However, the main interest of
the Fourier analysis is that the source volume is modeled
exactly. There is no need to delimit several particular re-
gions of space, e.g. nearfield with plane waves and farfield
with spherical waves. Furthermore, the primary and sec-
ondary fields can be obtained at any distance of the refer-
ence plane.

3.2.2. Paraxial approximation

In the paraxial case, i.e. when primary waves are direc-
tive enough along the z axis, two approximations can
be used in evaluating the kernel function: 1) The angu-
lar dependences can be withdrawn from amplitude terms
( c o s �

i

� � ); 2) The second order development of � k ap-
plies to evaluate the phase term:

I � z � f

�

� � �

	 �

�

�

�

� c

�

�

� � e x p

�

� � � � j � k � z

�

� � j � k

� (40)

with � � �

�

� �

�

� �

�

and � k � � k � f

�

� �

� �

�

c

�

�

�

�

�

�

�

f

�

�

� (41)

Considering a plane, baffled antenna in the paraxial case,
the secondary pressure spectrum is:
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where P

� i

� �

�

c

�

v

� i

( i � � � � ) are the equivalent pres-
sures at the antenna surface for each primary radiation, and
� � � j � k � f

�

� � is given by equation (41).
In the farfield, using equations (24), (41), (42), the

Fraunhofer approximation reduces into:
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3.2.3. Large antenna approximation

Equation (43) can be linked to the Westervelt [1] and
Naze-Tjotta [17] models in case of large antennas. Ele-
ments of the rigorous calculus can be found in [8] for cir-
cular projector, or in [18] (Part C.2). The roadmap of the
derivation is only recalled here.

The larger is the antenna, the narrower are the primary
spectra A . Whenever the condition

� R

�

�

� � �


 �

�

� � (44)

is met, the kernel � 
 a

�

in the integrand of equation (43)
can be considered as constant within the domain of in-
tegration that the product of the spectra A

�

�

A

�

dictates.
This domain is centered on the spatial frequency f

�

�

�

� m 
 � 


� � �

r � . Consequently, the secondary farfield pres-
sure induced by a piston-like baffled antenna reduces to:
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with � � m 
 r , where P

W

denotes the Westervelt on-axis
pressure:
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is the Westervelt directivity (related to equation (7)
with �
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and D

A

� � � is the directivity function associated to the pro-
jector directly driven at the difference frequency:
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3.2.4. Finite-amplitude interactions

Writing equation (1) with the Fourier formalism would in-
volve a huge number of spatial spectra, A

� � p �

�


 q �

�

� z � f � ,
whose corresponding modes interact each other. At the
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present state of the computer capabilities, the computa-
tional management induced by such an approach would
not be reasonable.

In order to reduce the complexity of the problem, the
proposed model is based on the assumption that most of
the secondary field is created by the only interaction of
the primary waves, i.e. equation (6) applies. However, the
finite amplitude of the primary waves is taken into ac-
count by introducing in equation (27) a z -dependence of
the spectra A

� � �

�

� z � f � and A

� � �

�

� z � f � .
On the other hand, because one major interest of para-

metric transmission is to produce a narrow beam, the an-
tenna must be designed to generate reasonably directive
primary beams. In that case, most of the contribution to
build the secondary field comes from the paraxial primary
modes. Consequently, the primary spectra used in equation
(6) to evaluate the secondary field are modeled by separat-
ing the variables z and f . Considering for now only plane
antennae, one uses the notations:

A

� v �

� � �

i

� z � f � � u

i

� z � A

� i

� f � � i � � � � � (49)

The taper functions u

i

� z � are dimensioned in terms of
acoustic velocities. The ratios u

i

� z � 
 v

� i

represent the
extra-attenuation that the saturation effect introduces in
the primary waves. Equation (49) implies that the primary
fields are described, in any plane 


z

, with the same rela-
tive distributions as in the linear case. The underlying as-
sumption is that the prominent effect of saturation in the
building of the secondary field is the relative shortening of
the source volume, rather than the alteration in its lateral
distribution.

Let us denote the acoustic velocities v

i

� z � � u

i

� z �

e x p � � �

i

z � , which take into account the overall attenu-
ation, i.e. linear absorption plus extra-attenuation. These
functions are derived by solving equation (1) in a 1D
model. Because waves are created at the linear combina-
tion of the primary frequencies, it is convenient to adopt
a notation with two indexes. The indexed quantity X

i � j

refers to the component at frequency �

i � j

� i �

�

� j �

�

( � � ). The relation with the former notation is thus:
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. Equation (1)
translates into the set of differential equations:
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, all other v

i � j

� � � being null.
Using equation (49), equation (42) is modified into:
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with the kernel:
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where � � j � k � f
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� is defined in equation (41).
By taking u

i

� z � � v

� i

, it can be checked that equa-
tion (51) reduces to the solution (42) corresponding to the
quasi-linear model in the paraxial case. Note also that there
is in that case
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According to equation (39), the field is obtained at any
finite distance by means of the inverse Fourier transform
of the spectrum (51):
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The farfield is directly computed with the Fraunhofer
approximation (19):
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4. Numerical model and comparison with
experimental results

4.1. Numerical model

A software tool has been developed to implement the
model described in the previous section. Source levels are
input to derive the extra-attenuation by means of the 1-D
set of equations (50); primary spectra (49) can describe
rectangular and circular apertures; the secondary spectrum
is evaluated with the integral (51); the secondary field is
obtained at finite distances with an inverse 2-D Fourier
transform (for circular transmitter, the computing is sim-
plified because it requires a simple, 1-D Fourier-Bessel
transform, as in equation 53); parametric farfields of rect-
angular or circular antennas are calculated with equation
(54).

Notice that the most time consuming operation is the
calculation of the secondary spectrum by equation (51)
because it involves a 2-D integration. However, the ker-
nel K � z � f

�

� , given by equation (52), is tabulated along f

� ,
and the extent of the significant spatial frequency domain
is asserted. Consequently, the integration of the product of
the primary spectra can be conveniently monitored with
this kernel.

Environment parameters are derived from empirical
models: Sound speed and attenuation are computed with
the Lovett [19] and François-Garrison [20] formulas, re-
spectively. They are reproduced in the Appendix.
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4.2. Comparison with experiments

Results obtained with the numerical model are compared
with experimental data. Three sets of measurements per-
formed with circular piston projectors are presented. The
first set comes from an experiment made by Muir and Wil-
lette [4]. The second set comes from the investigation of
Garrett et al. [21, 22, 23]. The third experiment has been
carried with a projector built in our laboratory [24]. The
main characteristics of these tests are summarized in Ta-
ble I.

Muir and Willette performed their measurements in
fresh water. The Rayleigh distance is much smaller than
the absorption length. Consequently, the difference-fre-
quency generation is dominated by nonlinear interactions
in the farfield of the primary beams. Muir and Willette pro-
posed a quasi-linear theoretical model that is suited to such
geometry. The mean source level is 204 dB ref 1 � Pa rms
at 1 m, so that the Gol’dberg number is about 	 � � . With
such figures, the hypothesis that the primary fields obey
the linear wave equation seems questionable. However, the
spherical spreading reduces the effect of the saturation in-
duced losses, and the validity of the quasi-linear approach
is confirmed with the results obtained by these authors
(Figure 6). The parameters of this experiment have been
used to compute the secondary spectrum with our model
(51), at z � � � m. The secondary field has been directly
derived from the spectral values with the Fraunhofer ap-
proximation (54). These numerical results are plotted in
Figure 6. The superimposition with experimental data ex-
hibits a good agreement.

With the experiment of Garrett et al., the secondary field
is observed in the nearfield of the primary beams. Sev-
eral parameters of the experiment are not readily available.
However, our numerical simulation shows that the sec-
ondary beam pattern does not depend significantly on the
estimated parameters (e.g. temperature), so that a compar-
ison can be performed. In addition, the on axis level is not
of concern because of the quasi-linear condition (the ob-
servation distance is much smaller than the shock forma-
tion distance). On the other hand, experimental data were
already faced with the theoretical results in the nearfield
derived by Naze-Tjotta and Tjotta [25, 26, 27]. Figure 7
reproduces this comparison, together with our numerical
simulation. Here again, a good agreement is observed.

A circular antenna has been built in our laboratory
(70 cm diameter, 100 kHz central frequency). Measure-
ments are performed at a few tens meters range in the
GESMA (Groupe d’Etudes Sous-Marines de l’Atlantique)
tank facility. The difference frequency varies from 10 kHz
up to 30 kHz. The influence of the transmitting power level
is also observed (215 to 230 dB ref 1 � Pa rms at 1 m).

Compared to the above-mentioned experiments, the
Rayleigh distance is half way between the projector and
the measurement location. The parametric beam is not
yet fully developed at this distance because both the ab-
sorption distance and the shock formation distance are
larger. Hence the observed secondary field results from
non-linear interactions that occur both in the nearfield and
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Figure 6. Beam pattern produced by a parametric array. Empty
circle: Muir and Willette experimental data [4]; Solid line: Muir
and Willette numerical results [4]; Solid circle: Numerical results
with Fourier based analysis.
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Figure 7. Beam pattern produced by a parametric array. Empty
circle: Garrett et al. experimental data [22]; Solid line: Garrett
et al. numerical results [22]; Solid circle: Numerical results with
Fourier based analysis.

in the transition zone of the primary beams. The sec-
ondary spectra corresponding to the experimental settings
are computed with equation (51), at z � � � m. The width
�

�

of these spectra imply equivalent Rayleigh lengths



�


 � �

�

�

� that are much larger than z . It forbids to de-
rive straightforwardly the pressure field with the Fraun-
hofer approximation. Consequently, the inverse Fourier-
Bessel transform have been applied to obtain the results
displayed in Figure 8. Theoretical and experimental results
match closely.

At 100 kHz, the primary beamwidth is 1.3 � at � � dB.
Driven directly at the difference frequency, this projec-
tor would produce beamwidths of 4.3 � , 6.4 � and 12.8 � ,
at 30 kHz, 20 kHz and 10 kHz, respectively. Accordingly,
sidelobes would appear at a relative level of � � � dB in
a classical linear transmitting mode. In the cases that
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Table I. Characteristics of experiments.

Projector 1 Projector 2 Projector 3

Diameter 7.6 cm 176 cm 70 cm
Mean Primary Frequency 450 kHz 13 kHz 100 kHz
Difference Frequency 64 kHz 2 kHz 10–20–30 kHz
Rayleigh length 1.4 m 21 m 26 m
Absorption distance 160 m � 10 km 230 m
Shock formation distance 20 m � 500 m 130 m to 500 m
Distance of observation 38 m 16.9 m 59 m

Difference frequency 10 kHz
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Figure 8. Measured and computed parametric pressure
fields, at 59 m of the projector. Diameter of the projec-
tor: 70 cm; Mean primary frequency: 100 kHz; Difference
frequency: 10 kHz, 20 kHz, 30 kHz.

have been investigated, the parametric beamwidth is in the
range 1.5 � –1.8 � , and no sidelobe has been observed.

5. Behavior of parametric antennas

5.1. Typical Responses in the Quasi-Linear Model

The quasi-linear model is convenient to explore the typical
behavior of the secondary field. The aim of this approach
is to extract some clues about the effects of the parameters
that define a parametric transmitter. A case study is investi-
gated with the above-described theoretical and numerical
tools. One chooses a square antenna (side = 50 cm). The
difference frequency is also fixed (15 kHz). In order to re-
main in the hypothesis of the quasi-linear model, the pres-
sure at the surface is 1000 Pa. The mean primary frequen-
cies range from 35 kHz up to 900 kHz. The upper limit ex-
tends far beyond a value of practical interest with regard to
the size of the antenna (in terms of primary wavelengths):

The purpose is to examine the limit case of very large an-
tenna.

Figure 9 displays farfield results obtained with three
models: 1) The Fourier based analysis equation (43) which
is considered here as the exact solution; 2) The Wester-
velt evaluations built with equations (7) and (46); 3) The
Naze-Tjotta model, equation (45), which introduces the
aperture factor (48) in the Westervelt model to correct the
beamwidth. Note that according to Eq.(44), the domain of
validity of the two latter approximations is restricted to
primary frequencies larger than about 100 kHz, although
Figure 9 displays the computed values over the whole trial
set [35 kHz, 900 kHz].

The bold solid curve shows clearly that an optimal
choice of primary frequency exists. This best configuration
is reached here when the mean value is around 90 kHz. At
a lower primary-to-secondary frequencies ratio, the evo-
lution of the secondary beamwidth departs frankly from
the approximate solutions. On the other hand, there is a
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tor, for each primary wave. Mean primary frequency varies from
35 kHz up to 900 kHz. Validity of the Westervelt and Naze-Tjotta
models starts at primary frequencies larger than 100 kHz.

0°

1°

2°

3°

4°

0 50 100 150 200 250
Mean primary frequency (kHz)

Se
co

nd
ar

y
be

am
w

id
th

@
-3

dB “Exact”

Naze-Tjotta

Westervelt

Primary beams
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reasonable agreement between all estimates for frequency
ratios larger than optimal.

It can be also noticed that the original and modified
Westervelt solutions remain close. Actually, a significant
difference would only appear for very high primary fre-
quencies. In this unrealistic situation, the parametric aper-
ture tends to the limit dictated by the aperture that the
projector would produce if directly driven at the differ-
ence frequency (the asymptotic solution is here about 10 � ).
Such parametric transmitter would be indeed useless.

The optimal set of parameters results from two phenom-
ena that compete in building the parametric directivity: 1)
given the difference wavelength, the end fire array length
increases when the primary frequency decreases (lower at-
tenuation), hence reducing the parametric beamwidth; 2)
given the size of the antenna, the primary beamwidth en-
larges when the primary frequency decreases. The interac-
tion of the primary waves is constructive within this aper-
ture. Hence, the lower bound of the parametric beamwidth
is commensurate to the primary beamwidth. Figure 10 dis-
plays the evolution of the directivity obtained with the pre-
viously presented models (Figure 9). In addition, the aper-

ture of the primary beam is superimposed. Note that as
in Figure 9, mean primary frequencies below 100 kHz are
beyond the domain of validity of the Westervelt and Naze-
Tjotta models.

The diffraction of the primary waves below 90 kHz dic-
tates the enlargement of the parametric aperture. The end-
fire array directivity is predominant beyond this value. As
a rule of thumb, the optimal parameters can be approached
by equaling the Westervelt aperture and the primary aper-
ture. The existence of such an optimal situation is also
outlined in [2, chapter 6] where the theoretical develop-
ments are based on primary fields modeled as Gaussian
beams. However, although analytical formulas can be de-
rived in some particular configurations, a complete numer-
ical model must be used to estimate the actual performance
of an antenna, i.e. the width and level of the parametric
field.

5.2. Optimization of a projector

Let us consider again that the fixed parameters are the size
of the projector and the difference frequency. The exis-
tence of an optimal mean primary frequency that mini-
mizes the parametric aperture has been put in evidence in
the previous section. The problem was addressed in the
quasi-linear model, so that the source level had no influ-
ence on the directivities. Actually, the source level changes
the figures when it involves saturation: As described with
the Westervelt scheme in Figure 1b, the relative length of
the end fire array is reduced when the shock formation dis-
tance is smaller than the attenuation length (	 � � ). Con-
sequently, the parametric aperture broadens. Because the
optimal configuration occurs when the Westervelt angle
and the primary beamwidth are close, it can be expected
that the mean primary frequency must be lowered with in-
creasing source levels.

Figure 11 is built with a circular projector of radius
1.05 m [28]. It displays the level and the half power
beamwidth of the secondary farfield for a variety of source
levels and ratios of primary-to-secondary frequencies. The
mean primary frequency is scanned from 35 kHz to 85 kHz
(step 5 kHz). The source pressure counted at the surface
ranges from 1 kPa to 75 kPa.

The lower part of the chart is representative of the
asymptotic behavior corresponding to quasi-linear model:
The angular response is independent of the source level
(solid lines are vertical); the optimal frequency is indeed a
constant; the secondary level is proportional to the square
of the primary pressure.

The upper part exhibits the effect of saturation: The sec-
ondary beamwidth enlarges with the primary level; the
secondary level does not grow any more as much as the
square of the primary pressure. The array of solid lines is
twisted: As expected, the primary frequency that gives the
better parametric directivity decreases as the source level
increases.

Given a diameter and a secondary frequency, the en-
velope of Figure 11 gives the best combination of sec-
ondary directivity and level. Figure 12 is a collection
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Figure 11. Secondary farfield level versus directivity. Difference
frequency: 15 kHz; Diameter of the projector: 1.05 m. Parame-
ters are the mean primary frequency (35 kHz to 85 kHz) and the
pressure at the surface of the projector (1 kPa to 75 kPa).

of such envelopes for various circular projectors. Hence,
this chart gives at a glance all the farfield performances
(beamwidth and level) that are reachable at 15 kHz differ-
ence frequency, together with the parameters to achieve
them (diameter of the projector, primary frequencies and
level). For example, let us assume that the required width
and level of the parametric farfield are 2 � and 190 dB ref
1 � Pa rms at 1 m, respectively. The chart gives the suitable
configuration: 75 cm diameter projector; 70 kHz mean pri-
mary frequency (i.e. 62.5 kHz and 77.5 kHz); 17 kPa pres-
sure amplitude at the surface, for each primary wave, i.e.
228 dB ref 1 � Pa rms at 1 m source level.

6. Conclusion

The spatial Fourier formalism is a convenient tool to
model the paraxial parametric transmission in the frame
of nonlinear interactions between finite-amplitude waves.
The secondary field can be obtained at finite distances,
with versatile projector geometries. The numerical imple-
mentation of the theoretical model is manageable with
reasonable efforts. Confrontations with experimental data
show good agreements.
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Figure 12. Optimal secondary beam characteristics achievable
at 15 kHz difference frequency, with projector diameters rang-
ing from 0.4 m to 2 m. Corresponding primary frequencies and
levels.

However, the most questionable hypothesis in the finite-
amplitude model is the separability of the distance and
spatial frequencies that equation (49) involves. More spe-
cifically, the pending question is the limit of validity and
the consistency of the 1-D model in estimating the extra-
attenuation. Further comparisons with experiments that in-
volve stronger source levels must be performed.

In designing a parametric antenna, a proper balance
must be set between the length of the interaction zone and
the aperture of the primary beams. In the frame of the
quasi-linear assumption, orders of magnitude are easily
obtained by simple calculus derived from the Westervelt
model and from the approximate width of the field that an
antenna generates after linear propagation. However, the
complete numerical model cannot be avoided to compute
the optimal parameters to be used in the actual situations
that involve finite-amplitude interactions. To do so, charts
such as presented in Figure 12 can be drawn for any re-
quired particular applications, e.g. at finite distances.

Appendix

This appendix contains the formulae for sound speed and
absorption that are used to compute the numerical results
presented in this paper. The following notations are de-
fined:
z (m): Depth; T ( � C): Temperature [ � �

� C, � � �

� C];
P (Pa): Pressure referenced from surface, derived from
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depth z [0 m, 8000 m] and latitude � by the simpli-
fied Leroy’s equation P � � � � � � � � � � � � �
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