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Presented here is the derivation of nonlinear interactions that occur within a primary narrow 
beam for which the temporal spectrum is continuous and narrow. This follows the bases of the 
Fourier formalism. Acoustics levels are presumed weak enough so that second-order equations 
may be used. In the quasilinear case, the exact theoretical expression of the created parametric 
farfield, formed from a transient modulated primary signal, is established, by using weakly 
restrictive assumptions. The case of high primary levels is discussed. Some experimental results 
are presented. 

PACS numbers: 43.25.Lj 

INTRODUCTION 

The idea of using the nonlinear properties of acoustical 
propagation arose about 1960 when Westervelt conceived 
the parametric emitter. In 1965, Berktay • suggested a way of 
producing pulsed signals by means of self-demodulating a 
primary wave in which the temporal spectrum does not re- 
main discrete, but extends continuously through a narrow 
bandwidth. Using a plane-wave model, Berktay showed that 
a primary carrier, with the amplitude modulated by an enve- 
lope f(t), produces a secondary signal in which the pattern 
is described with 09 2 ( f 2)/& 2. This phenomenon must not be 
confused with viscosity effects, studied within a linear 
framework? ,3 

Since these theoretical expectations ofBerktay, a certain 
amount of experimental confirmation has been achieved, 4-7 
although another expression for the demodulated signal pat- 
tern (a• 2f/•t 2) was proposed by Merklinger 8 in the case of 
high primary level (r'>> 1; F is the Goldberg number). The 
inverse problem, i.e., the optimization of an input signal to 
obtain a given received pulse, has been studied by including 
numeral and experimental iterative processes. ø 

Some studies only deal with one-dimensional models, 
such as work •ø on the progressive distortion of an initially 
biharmonic plane wave in which the duration is limited to 
the difference-frequency period, with strong nonlinear inter- 
actions (F>> 1). Other studies, based upon the Burger's 
equation, refer to plane, cylindrical, and spherical waves-- 
i.e., solutions established for a few special cases • •--and ne- 
glect linear absorption and those cases for which the validity 
is ensured only up to discontinuity length; or some studies 
refer to those exact solutions (plane waves)n derived from 
graphical methods that may be used to determine how wave 
profile is changing due to self-demodulation. 

The complete three-dimensional (3-D) problem is 
treated in many ways. Using the Burger's equation again, 
Gurbatov et al.•3 examined the secondary directivity and the 
parametric efficiency of high-powered emitters (F >• 1 ), for 
which the primary beams are supposed to be spherical from 
the source. Several calculations are supported by the Wester- 
reit model; i.e., they use an integration of virtual sources in 
the volume where primary waves interact. Thus Moffett and 

Mello, •4 using temporal Fourier decomposition, obtained 
the theoretical expression of the secondary farfield, on-axis 
and far off-axis, with a source line hypothesis (collimated 
primary beam: ao•o>• 1; a 0 is the coefficient of linear ab- 
sorption at the central primary frequency, and •0 is the 
Rayleigh distance of the transmitter at this frequency). With 
the hypothesis of spherical waves (ao•? 0,• 1 ), the result is 
given for all directions. Rolleigh •5 concluded that, for 
spherical primary sound fields in which the directivity fol- 
lows a Gaussian law, the secondary sound field is given by 
the convolution of an input function {•3 2( f2)/& 2} with the 
impulse response of the parametric array. The theoretical 
approach of Pace and Ceen •6 is similar, but this impulse 
response is evaluated in the case of collimated plane-wave 
primary beams produced by a piston. More generally (Ste- 
phanishen and Koenigs•7), this space-time impulse response 
may furthermore be seen itself as the convolution product of 
the impulse response of a linear array with another response 
that depends only upon the transducer aperture. For a circu- 
lar piston, an original and simple geometrical approach ks 
(numerical simulation and experiment) may also be men- 
tioned: Formally, the on-axis response is evaluated by sum- 
ming two waves. The first comes from the center of the disk, 
and the other from its contour, with the calculations taking 
into account the nonlinear distortion of these waves along 
their geometrical path. At the end, a low-pass filtering gives 
the demodulated signal. 

Finally, mention may be made of a secondary field eval- 
uation using parabolic approximation •9 and a discussion 
about the exact source location of the low-frequency signal 
observed in the farfield of a pulsed parametric emitter, i.e., to 
determine the effective interaction area from which the de- 

modulated signal originates? 
Another interesting study (Gubatov and Dubkov 2• ) in- 

volving nonlinear self-demodulation concerns the evalua- 
tion of the low-frequency noise generated by a quasimono- 
chromatic source with small random phase and amplitude 
variations. In Reft 22 is examined the stability in the re- 
sponse of a parametric emitter versus primary phase fluctu- 
ations. 

Here is presented a theoretical calculus that gives the 
analytical expression of the secondary farfield generated by 

473 J. Acoust. Soc. Am. 88 (1), July 1990 0001-4966/90/070473-09500.80 © 1990 Acoustical Society of America 473 



nonlinear self-demodulation of a primary 3-D wave. This 
primary field is radiated from a plane transducer, driven 
with a narrow frequency bandwidth. The source signal is 
thus obtained by modulating a carrier frequency %. It is 
assumed that the primary directivity is such that the half- 
power beamwidth does not exceed about l0 deg (in fact, the 
only ease with practical interest). A time-space Fourier 
analysis is used to describe this primary field which leads to a 
fairly general solution. Experimental results 7 test those theo- 
retical results. The discrepancy between this theory and ex- 
periments when finite-amplitude waves occur is discussed. 
This paper extends and follows up previously presented 
studies. 23.24 

I. THE FOURIER FORMALISM IN ACOUSTICS (A 
REMINDER) 

The notion of the angular spectrum of radiation has al- 
ready been widely applied in acoustics. 25'26 But the Fourier 
analysis 27 technique cannot be directly generalized in ab- 
sorbing media simply by using classical attenuated plane 
modes, in which the signature in the reference plane does not 
remain with a constant amplitude. This difficulty is over- 
come by using inhomogeneous plane modes introduced by 
Alais. 28'29 These modes are waves with equiphase planes that 
extend perpendicularly to the direction of propagation, 
while equiamplitude planes remain parallel with the refer- 
ence plane. With these new elements of decomposition, the 
Fourier analysis is now applicable to problems of acoustics 
in absorbing media. Theoretical and numerical calculations 
induced by this method often exhibit simpler results through 
approximations that may be demonstrated. As far as our 
subject is concerned, the case of the nonlinear interaction of 
two such modes has been treated, 3ø then extended to that of 
two harmonic radiations. 3• Many other developments fol- 
lowed later. 7'23'24'32-36 Presented here is the basis of the for- 
malism involved in Sec. II. 

A. Spatial Fourier decomposition 

Let us consider a monochromatic radiation, propagat- 
ing in an absorbing linear medium. Here, II o (z = 0) denotes 
a reference plane, so that there is no source in the half-space 
z < 0. In every point r of this area, the acoustic field (pres- 
sure, voluminal mass, or velocity potential) 
g ( r,t ) = G (r) exp ( - jtot) satisfies the classical wave equa- 
tion 

[3'g = O, 

with ( 1 ) 

O '• -- I +--• pod, 

in which [•' denotes the operator of propagation in an ab- 
sorbing medium (•/is the global viscosity of the fluid). 

We want to describe G(r) as a superposition of plane 
waves that obey this equation. The Fourier technique is 
based upon a 2-D representation of fields, within II• planes 
which remain parallel to a reference plane [Io, on which each 
elementary mode has a harmonic signature. But classical 

attenuated waves G(r) = exp( j k.r - ar) do not satisfy this 
criterion. 

The G(q) distribution of the radiated field on II o 
(q•_II o) can be expressed by means of a classical decomposi- 
tion: 

G(q)= f f A?'(f)d•S"qdf, (2) 
in which vectors f are the observed spatial frequencies in the 
reference plane 1-[ o. Conversely, the spectrum A ?(f) is 
identified with the spatial Fourier transform of G(r) in 1-I o. 

The formalism used requires that the plane modes suit- 
ed to the decomposition have an amplitude spatial invar- 
iance along directions parallel to H o, except for the phase 
term e 2•;t'•. Then, it is easy to show that the solutions sought 
take this form: 

exp[ j(k'.r - tot] , 
with 

k' = k +j(ct/cos 0)•, 
and 

k = 2rrf + k•, (3) 

]kl to to2• 2rcf, =--, a--- 0=(k,z), sin0----- 
co ( 2poco 3 )' k 

taking into account a/k• 1, and excluding far-axis modes 
(there is no cos 0,• I), which is not too restrictive an as- 
sumption. 

So, these modes [ Eq. (3) ] possess a complex wave vec- 
tor k' that obeys the dispersion ,law k 'e(Co • -Jto•l/Po) = toe 
associated with Eq. ( 1 ), and the projection of which within 
the spatial frequency plane remains real (2•r f). Consequent- 
ly, these inhomogeneous plane modes remain compatible 
with the Fourier formalism since their equiamplitude planes 
remain parallel to the reference plane. 

The complex amplitude G(r) of a monochromatic 
acoustic radiation, at a point r of the plane 11• (z is the dis- 
tance between II• and the plane of emission), is then com- 
pletely defined, within linear acoustics, by summing the in- 
homogeneous modes weighted by the associated spectral 
values, in the spatial frequency plane, 

G(r)=ffA?'(f)exp( az +jl•.r) d f. (4) cos 0 

This relation may also be interpreted as the spatial in- 
verse Fourier transform of the spectrum .,/(g) (f,z) related to 
the II• plane: 

G(r)=ffA•)(f,z)e2•'mdf, m•.= 
(r=m+z) (5) 

with A • (f,z) = A ? (f)Ho, (f). Here, Ho• (f) is the opera- 
tor of propagation from II o to II:, related to the mode whose 
spatial frequency f gives the direction of propagation. Com- 
paring Eqs. (4) and (5), it follows that 

Ho, (f) = exp( -- ctz/cos O +jk•z) . (6) 

When the distance z of the observation plane becomes 
greater (z >> •o; •o is the Rayleigh distance of the emitter), 
the integration of (4) with a saddle-point method leads to a 
farfield approximation, comparable to that of Fraunhofer: 
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G(r) = (cos O/jAr)e2'•J'/% •rA ?(sin 0/2) . (7) 
[Here, 0 is the observing angle (r,z). ] 

When the emitter is plane, with pistonlike operation 
(front face uniformly moves along the z axis: v = v:•.), the 
spectrum of acoustical velocities in He, A o (") (f) reduces sim- 
ply to the Fourier transform •(f) of the pupil function Pu 
describing the transducer aperture [Pu (q) = 1 on it, 0 else- 
where ]: 

ff e2"qdq. (8) 
Finally, let us note that relations v--grad(•)--i.e., 

v z = 8q3/Sz in projection--and po(o%/•t) 
-- grad(p) + r/V'-v--reduced to p = -po(&b/&) be- 

cause of a/k • 1--involve the following relations between 
potential, normal velocity, and pressure spectra of a mono- 
chromatic radiation: 

A (v) =jk•A (•), and A (p) =jpocoA (• (9) 

B. The Fourier formalism and nonlinear acoustics 

The second-order equation of nonlinear propagation 
may be written 

t2'4 = S 
with (10) 

Co at [ Co \ / ] ' 
The existence of the source term S shows that space- 

time spectral components of radiated fields change during 
nonlinear propagation. In order to take this phenomenon 
into account, we still describe each harmonic beam (angular 
frequency co) as a superposition of inhomogeneous plane 
modes [Eq. (3) ], but with z-varying amplitudes, for every 
spatial frequncy f: 

g(r,t) = G(r)exp( -jot), 
with 

G(r) = Ao,o(f,z)exp(-az/cosO+jk.r) . (11) 

With each considered angular frequency co, this form 
allows the term of propagation Ho(• ') (f) [Eq. (6) ], coming 
from the operator [ Eq. ( 1 ) ], to be kept in the expression of 
the spectrum A•o, (f) corresponding to the lI• plane: 

A,•, (f) = Ao• , (f,z)Ho•')(f,z) . (12) 

It should be noticed that evolutions of Ao• , (f,z), due to 
nonlinear propagation, remain slow compared with the z de- 
pendence of H o• '). Consequently, keeping the product [ Eq. 
(12) ] makes it easier to find solutions ofEq. (10). Solving it 
can now be reduced to calculating these reference spectra 
Ao,o if, z), as their invariance (with respect to z)--in the lin- 
ear model--is now destroyed. 

These distributions Ao• , (f,z) are defined for every obser- 
vation plane II• and every angular frequency co. They may be 
understood as spectra returned to the z = 0 plane, which 
correspond to virtual sources, entirely localized in the half- 
space z<0; and these sources produce the actually observed 
acoustic fields in II z. In every observation plane, it is then 
possible to calculate the acoustic field at a given angular 

frequency, transforming with Eq. (4) the corresponding 
spectrum of virtual emission, in the same way as with the 
linear model, including the ability to use the farfield approxi- 
mation [ Eq. (7) ]. 

This model considers binary wave interactions as they 
appear with the quadratic nature of the source term S. Thus 
the elementary problem can be reduced to the interaction 
between two modes g,. [ Eq. ( 11 ) ], characterized by the two 
sets of angular and spatial frequencies (co,f, i = 1,2). The 
source term S [Eq. (10) ] holds with elements at frequencies 
2co•, 2co2, co+ = co, + co2, and co = co• - co• (choosing 
co2 > co,)- We are only interested here in the coupling at the 
difference angular frequency co_. The corresponding source 
term S_ is thus written 

_ 1 •t(Vg•..Vg • + B log, Og2. • S_ Co • 2--•- Co • 0•- Ot / ' (13) 
The equation of propagation [Eq. (10) ] here takes the 

form 

[•'g_=S , (14) 

from which one deduces, considering time invariance, that 
created g_ modes have the angular frequency co_: 

g_(r,t) = G_(r)exp( -jco t) . (15) 

From Eqs. ( 11 ) and ( 13 ), S_ is invariant in planes nor- 
mal to z, except for the phase argument 2rff_.r, with 
f- = f2 - f•. Therefore, G modes share the same property 
and must be written 

G_(r) =Ao (z)exp( --a_z/cos 0_ +jk_.r) , (16) 

with k_ +j(a /cos 0_)i the complex wave vector of the 
inhomogeneous mode associated with the frequencies f_ 
and co [k_ =co n_/co, sin O_ = 2rrf_/k , and 
0_ = (z,n); n_ is a unit vector]. 

In Eq. (16), the exponential term is the solution of Eq. 
( 1 ). Thus solving Eq. (14) can be reduced to a one-dimen- 
sional problem. Now, within the second-order approxima- 
tion, the amplitude variations are weak after propagation 
along wavelengthlike distances; i.e., IkA I>> I&//o•zl and 
[k(c)A/c•z)[>>[82A/dz2[. So, Eq. (14) finally results in a 
first-order differential equation. It can be noticed that vec- 
tors k and (k 2 - k•) have the same projection (2rrf) in the 
spatial frequency plane. Thus the phase difference (Ak).r 
between source and created wave is the following projection 
(on the z axis): 

(Ak)'r=lk2--k•--k_[z=(k•,--k•,--k • )z, (17) 
which allows one to write, in the paraxial case (directions k s , 
k_,, and k_ are close to z): 

dA o (f_,z) _ /3co'co* A•'•(f,z)Ao2(f2,z)e .... ,(18) 
dz 2Co • 

where /3 = I + B/(2A), v_ = a --jAk, and 
a•a2--a I --15[_. 

Within a plane II•, the contribution of both primary 
modes (f•,co•) and (f2,co2) to building (f_=f2--f, 
co- = co2 -- co•) is given by integrating Eq. (18) along the z 
axis. When the pressure level of the studied acoustic fields 
remains low enough, the assumption of so-called weak inter- 
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actions may be used to calculate the growth of modes created 
with nonlinearity. In this case, initial waves are supposed not 
to be altered; that is to say, primary waves obey the linear 
wave equation (1). Each primary amplitude Ao• (f) no long- 
er depends on z, and integration of Eq. (18) gives straight- 
forwardly 

A o_ (f_,z) =A •! (fl)Ao2(f2)I-(fi,f2,z) , (19) 

where 

I_ = -- (/•rolro2/2Co • ) [ ( 1 -- e .... )Iv_ ]. 

In order to express v_, it must be noted that the most 
constructive interaction between two primary modes is real- 
ized when the phase shift Ak [Eq. (17)] is null: 

Ak(fo,,fo, ) = kz, (fo.) -- kz, (fo,) -- kz_ (f_) =0, 
with 

kz, = (oi/Co){l -- 
This occurs when the wave vectors ko, and ko. are colin- 

ear. Thus the corresponding spatial frequency vectors are 
described by 

fo, fo. f_ 

When k, k 2, and k_ points to close directions, it is then 
convenient to expand Ak with respect to this new spatial 
frequency vector: 

f = (co;f, -- o•f2)/ro_ , 

as it can be seen that f• -- fo, = f2 -- f0: = f'- The expression 
of Ak_ developed to the second order then gives 

= [ ( 2=of_.r o1(o 2 _ 

which is reduced to Ak_ = (2rr•coro_/ol•o2)F 2 in the par- 
axial case (as soon tan 0_ • 1 ). Finally, the kernel I_ is re- 
duced, in the farfield (e - •zg 1 ), to 

Ioo_ (fl,f2)- 2co 3a 1--j 
ß -. (20) 
0.} I (09J ] 

II. NONLINEAR SELF-DEMODULATION 

A. Primary field 

One assumes that a pistonlike transducer is fed with a 
harmonic (frequency Vo) signal. This signal is modulated by 
a function %. On the plane II o (z = 0) containing this emit- 
ter, the normal velocity field may be written 

v•(q,t) = Pu(q)Vo(t)exp( -- 2rrjvot) (q•II o) , (21) 

in which Pu is the aperture function of the transducer. 
Separation of variables z and t in the description of mo- 

tion given in Eq. (21 ) allows the corresponding space-time 
spectrum to be obtained easily: 

A •" = •(f)T(v -- v o) , (22) 

in which Y(v) is the temporal Fourier transform of the mo- 
dulating function Oo(t), and .a/(f) the spatial Fourier trans- 
form (8) of the pupil function Pu (q). 

Let us note the typical mean primary high-frequency 
(HF) directivity angle of the transmitter as 
Od --• (AO/•O) '/•, in which •o is the Rayleigh distance cal- 
culated at the central frequency (the shape of the aperture is 
supposed not to be too asymmetric). We assume Od is small 
enough compared with 1 so that the only significant spectral 
components •a•(f) [compared with •:/(0)] are those that 
remain near the axis z. Therefore, the approximations 
sin 0_•0 and cos 0_• 1 are valid in amplitude calculations, 
within the useful domain of spatial frequencies f = vOlco. 

Following Eq. (9), the potential spectrum of the pri- 
mary beam is then defined by 

Ao(f,v) = ( l/jk• )A •) • (Co/j2rrv).a/(f)T(v -- Vo) . (23) 

With the assumption of weak nonlinear interactions, the 
primary radiated field obeys the wave equation ( 1 ). In terms 
of the potential, this field is written, given Eqs. (4) and (23), 
as 

I cø 'Y'(v--•/ø)•f• '•/(f)eJk'• dr) •(r,t) = j-•-• 
Xexp[ -- a(v)r -- 2•'jvt ] dr. (24) 

On the other hand, we assume the relative bandwidth to 
be narrow: The ¾(v) temporal spectrum of Oo(t) extends 
only within low frequencies v compared with %. Noting 
¾BF max as the greatest extension of the bandwidth, we define 
a parameter/L, with 

fin, = ¾O/¾BFmax >• 1 . (25) 

El. The spectrum of nonlinear interaction products 

Self-demodulation results from parametric interactions 
between every space-time plane mode corresponding to the 
• (v) spectrum. The low-frequency acoustic field thus creat- 
ed is generally not so easy to evaluate because it depends 
upon the modulation function %(t), through a space-time 
filter. However, this difficulty is removed when using the z-t 
separation to define the normal velocity [Eq. (21) ], which is 
used for temporal and spatial frequencies with respect to the 
spectrum expression [Eq. (23)]. 

The interaction of two constitutent modes 
[ (f,v•),(fz,vO ] of the primary field [Eq. (24) ] creates the 
mode (f= f2 -- f,, v= vz -- v•). Far from the source area 
{[a(%) + ct(v2) -- ct(v)]z>> 1}, and in the paraxial case 
( f• • v,/c o, f• • %/c o, and f• v/c o), this secondary mode is 
given with Eqs. (19) and (20), which become here 

a o_ (f,v) = -- (13/2CoV_)•*(f•)¾*(v • -- Vo) 

X •a/(f I + f)T(v I + v -- v o) , 

with 

O__ = [C/t(Vl) '-[- Ct(V2) 

--j[rrCoV/V• (v I + v) ] [f• -- (Vl/V)f] • . (26) 

The relative narrowness of the primary bandwidth [Eq. 
(25) ] allows o_ to be reduced, using approximate expres- 
sions which no longer depend upon 
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ct(vd ,--a(v2) =ct(vo) = ao, v/[v•(v• + v) ] =v/•, 
and 

Thus (27) 

o_ •2ao(1 --j(rrcov/2•oCto) If, -- (Vo/v)fl2) ß 
Integrating Eq. (26) with respect to v• and f•, so as to 

add every contribution that creates the secondary mode 
(f,v), it appears, with the help of approximations (27), that 
a partial separation between temporal and spatial frequen- 
cies remains in the secondary spectrum expression: 

A o_ (f,v) = -- ([•/4coao)G(v)S(v,O = cof/v) , (28) 
with 

G(v) = ; T*(Vl - Vo)T(v, + V- Vo) dv, , (29) 
and 

df• ß (30) 

C. Demodulated field 

L General expression 

In the Frauhofer zone of the secondary radiation--that 
is to say, in a farfield of the primary interaction zone--the 
radiated field associated with the •pectrum [ Eq. (28) ] is 
obtained with Eq. (7), for a given v frequency and 0 paraxial 
direction. Following Eq. (9), it is written in terms of pres- 
sure: 

P_ (z,O,v) _• ( 2rrj¾)2G( v)e 

X(pol?/Srrco:Ctor)S(v,O)e -•(•'}' . (31) 

Here, G(v) [Eq. (29) ] is the self-convolution product 
of the T(v) spectrum. From this property, it may be derived 
that the temporal inverse Fourier transform of the first three 
terms within the second part of Eq. (31 ) is 

[1oo0- ro)l FT•-'[ (2rrjv)2G(v)exp(2•oVr)l= d2 r :z]. 
(32) 

If oo(t) is a real function, which represents an exclusive 
amplitude modulation, [re(t) {2 is the square of this envelope 
Oo; otherwise it means the square of the modulus {Vol if the 
HF carrier is also phase modulated. 

In other respects, one notices that S(v,O) [Eq. (30) ] is 
the farfield paraxial secondary directivity of the (direction- 
al) transducer working as a parametric transmitter with a 
/t = vo/v frequency ratio, calculated with the weak nonlin- 
ear interaction assumption. Let us denote Z (t,0) as the tem- 
poral inverse Fourier transform of S. 

Finally, with the sole hypothesis that a transducer, 
which is supplied with a narrow-bandwidth modulated car- 
rier, radiates a sufficiently directional HF beam, the de- 
modulated paraxial farfield may be written 
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P_ (z,O,t) = Pol? 

*•Z(t,O)*A(r,t) , (33) 

in which A (r,t) is the temporal inverse Fourier transform of 
the exp[ -- a (v)r] function, i.e., the impulse response of the 
absorbing medium after a unidimensional propagation along 
a distance r. 

Usually, Z(t,0) can be obtained only by numerical cal- 
culus. However, with a few added assumptions, other analy- 
tical results can be obtained. 

2. Approximate expression 
The following developments are based upon the as- 

sumption that the HF beam directivity Oa verifies 
0 • •Coao/VaF •, this condition being equivalent to 

/t,• ao•o >> 1 (34) 

[fi,,: see Eq. (25); ao: see Eq. (27); •o: Rayleigh distance 
(at re) ]. 

Since/t,, >> 1 [Eq. (25)], it must be noticed that this 
assumption [Eq. (34)] does not mean that the zone where 
interactions take place is necessarily confined to the colli- 
mated part of the primary beam, as it is with the Westervelt 
model in which ao3•o > 1. It only states that the interaction 
zone does not extend beyond a distance of about/t ,, •o. 

On-axis (0=0), it can be seen that the product 
•t. ( f• ) •a/( f• ) involved in Eq. ( 30 ) takes its significant val- 
ues when the spatial frequency f• belongs to a domain in 
which the size does not extend beyond a distance Oarelco 
from the origin. Thus the following term may be ignored in 
the interaction kernel: 

rrcov/(2•cto) f• ,• 1, (35) 
and S(v,O) is then reduced to the value of the transducer 
area 

.•, = •f .•'. (f,).•(fl ) d fl. (36) 
The demodulated farfield signal received on the axis 

then has the shape given by Berktay,' except the convolution 
with the A function (due to linear absorption): 

Off-axis, the observation angle 0, previously assumed to 
be paraxial, is now also restricted so that OV/Co<OdV•JCo: 

0•1, 0</•0a. (38) 
This condition ensures that the product 

•*(f,).•(f, + Or/co) in Eq. (30) takes its significant val- 
ues when the spatial frequency f• belongs to a doman in 
which the location does not extend beyond the on-axis case. 
Thus it still is possible to eliminate (35) in order to integrate 
Eq. (30). 

To eliminate the cross term (rrv/2%•to)f•0 as well, the 
observation angles 0 are furthermore supposed to conform 
with 

O• (fi,,cto•o)Oa , (39) 
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which, taking into account Eq. (34), is not a more restrictive 
condition that the paraxial hypothesis already in effect. 

The expression (30) of S(v,0) is then reduced to 

s(¾,0) = l 2c-o) 
X •*(fl)d f• + df•. (40) 

c o 

The E(t,0) Fourier transform orS(v,0) thus appears to 
be the temporal convolution product: 
5;(t,0) = O(t,O)._•(t,O), in which O(t,O) is the impulse re- 
sponse of the parametric source line and •(t,0) that of the 
transducer. 

The first response is the temporal inverse Fourier trans- 
form of the Westervelt directivity function: 

O(t,O) = 1 --j 2c•) e , (41) 
the expression of which can be shown to be 

O(t,O) = H(t) (4aocdO2)exp[ -- (•oCo/02)t I , (42) 

in which H is the Heavyside function [H(t>0)= 1, 
H(0) = •, andH(t<0) = 0]. 

The calculation of E (t,0) is made by rotating the refer- 
ence frame ( f•, • ) of the spatial frequency plane so that one 
of the axes (for instance, • ) equates the projection, on this 
plane, of the direction 0: 

o C 0 ] 

X e - 2i•,,t dv 

--5f(f d*(j•,jy,e ajy] 
• •(fx,fy)e •i•d;•/ødfy . (43) 

Next, one replaces • with its definition, that is to say, 
the Fourier transform of the pupil function Pu over the 
transducer aperture (notice that Pu* = Pu): 

E(t,0) = ru•x,y•e • dx dy 

X e •'•/o dfy ] 

Xe-ZW'•;•/ødf• . (44) 

After resequencing the different integration variables, 
and computing parts that are relative to exponential terms, 
one obtains 

(t,o)=ffffPu(x,y)Pu(x',y') 
X•(x - x')•(y + Cot/O) 

x•(y' + Cot /O)dx dy dx' dy', (45) 

which, taking into account that Pu 2 (x,y) = Pu (x,y), finally 
leads to 

The geometric interpretation of this last function is evi- 
dent: --(t,0)'s temporal evolution is proportional to the 
length L• ( -- Cot/0) of the segment where the transducer 
aperture intersects the plane that approximates the sphere 
centered at the observation point with a radius growing at 
the speed Co: 

-• ( t,O) = ( co/O)L• ( - cot/O). (47) 

Thus E (t,0) is the classical farfield impulse response of 
the transducer. 

To sum up, using only the following hypotheses: Oa • 1: 
high HF primary directivity; fi• • 1: high parametric fre- 
quency ratio;fi• ao•o• 1: interaction area does exceed the 
distance fi•o beyond the transducer; 0•1, 
O< A • O a, 0 • • m ao• o) O a : paraxial direction of observa- 
tion; the acoustic farfield [Eq. (33)] created by nonlinear 
self-demodulation of a primary HF beam is described, in 
terms of pressure, with the following sequence of convolu- 
tion products: 

P_ (z,O,t) 8rrc•ctoz dt2 Vo t--•o ø 
*•)(t,O)*•(t,O)*A(r,t). (48) 

The first term (32) is closely dependent upon the modu- 
lating function; the second term (42) takes into account the 
structure of the interaction area; the third term (47) is dic- 
tated by the shape of the transducer; the last term reflects the 
viscous attenuation. 

One can verify the consistent results .f _+ • © (t, 0) dt = 1 
and œ+ •_•(t,0) dt= •. Furthermore, there are also 
©(t, 0) = 6(t) and E(t,O) = •6(t), which correctly return 
the on-axis result [Eq. (37)] from Eq. (48). On the other 
hand, characteristic temporal widths of functions 
are, respectively, given by At• = 02/(4aoc o) (subscript l 
used to recall source line) and At* = OF/c o (subscript s for 
transducer section; Fis its mean transverse size: 
The effects of convolutions with these functins are even more 

important as the corresponding intervals/•t(0) are not neg- 
ligible compared with the minimal period AT = 1/vur•=. It 
must be noticed that the hypotheses that connect relative 
values of 0, Oa,/4,•, and ao cannot a priori locate these inter- 
vals At t and At, with regard to AT. It is only possible to 
deduce the following relations: At• ,• (4aoA) - •/•T, 
At*.•(/4•Od)-•AT; Att•</,•(4ao•?o)-•Ar, At*<Ar; 
•tt ,• (/4,,o3Po/4) AT, At* ,• (ao•o)AT; in which nothing 
can be said about aoA,/4• Od, and Co3? o with regard to 1. 
However, an important fact to be considered is that the con- 
dition ao3?o>>l rarely occurs. So the last relation 
At• •tzo•oAT shows that, according to the specified hy- 
potheses, the convolution with -= in Eq. (48) disappears and 
is replaced only with a product with the factor • 9•. Thus the 
exact shape of the transducer aperture has no effect upon the 
demodulated signal pattern within the paraxial farfield. 
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FIG. 1. Schematic of experiment. 

$, High acoustic levels 

When the emitted pressure level increases, it seems very 
difficult to develop a practical sophisticated model to de- 
scribe nonlinear self-demodulation including finite-ampli- 
tude effects. The primary wave, in which the spectral do- 
main is a narrow bandwidth centered in vo, dissipates energy 
by creating harmonic bands centered around frequencies nv o 
(n integer). But all these new components again interact 
among themselves, so that a simple analytical calculus is no 
longer available. 

The low-frequency parametric radiation is no longer 
produced by the only interactions of the primary waves. The 
signal previously obtained from weak interactions should 
therefore be significantly distorted. A simplified argument 
in order to understand this phenomenon is that the self-de- 
modulation of every harmonic band produces a wave that is 
superimposed upon the signal [Eq. (22) ]. 

III. EXPERIMENTS (REF. 7) 

We have begun an experimental investigation (in wa- 
ter) of the theoretical approach using the configuration de- 
scribed in Fig. 1. By means of the computer and buffer mem- 
ory, any kind of modulation function can be used, and 
through the waveform digitizer, several received signals can 
be added together to raise the signal-to-noise ratio. The elec- 
trostatic probe has a flat response for low frequencies up to 1 
MHz, and the emitting transducer centered at 6.2 MHz has a 
3-dB bandwidth larger than 1 MHz. It behaves just like a flat 
oscillating 15-mm-diam piston with a high directivity: 
03 aB = 0.6ø. 

The characteristic values associated with the primary 
beam are b•o=0.80 m and ao_0.92 Np/m. Thus it may be 

t 

FIG. 3. Parametric signal. Primary signal as shown in Fig. 2, SL = 217 dB 
ref. 1/zPa (rms) -- l m. Solid line: recorded signal; dashed line: theoretical 
result. 

assumed that condition (34) is satisfied as soon as A > 14 
(then,,/Zaob• o > 10); that is to say, VBF max < 440 kHz. Mea- 
surements are made with z_• 2.5 m, this distance being far 
enough from the secondary sources (i.e., primary field) 
since 2aoz•20 dB, but too short compared with b• o to de- 
duce valid conclusions from off-axis records. 

The power amplifier would allow the emitted pressure 
to be raised to 230 dB ref. 1/zPa -- I m, which corresponds 
to the values of the ratio F of the attenuation length/• • 1 m 
over the discontinuity length/•d up to 15, assuming a perfect 
collimation of a pure harmonic primary beam. 

Using a Gaussian modulation function (Fig. 2), the 
theoretical expression (32) is compared with the experimen- 
tal on-axis result in Fig. 3. The observed discrepancy is more 
apparent when one uses a chirp-modulated beam (Fig. 4) to 
produce the result obtained also on-axis (Fig. 5). The de- 
modulated signal should admit a quasiparabolic envelope, 
but, in fact, it exhibits a saturation effect for modulation 

frequencies over about 220 kHz. Although Fig. 5 was ob- 
tained with a fairly high source level, i.e., 224 dB ref. 1 

FIG. 2. Primary signal (Vo=6.2 MHz); Vo(t)=exp(--at2), with 
a = 1.54X 10 •ø s -2. 

FIG. 4. Primary signal (vo=6.2 MHz); Vo(t)=sin(at2), with 
a - 2.31X 10 •ø s -2 and 0•t•64.5 ixs. 
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FIG. 5. Parametric signal. Primary signal as shown in Fig. 4, SL = 224 dB 
ref. 1/zPa (rms) -- 1 m. Solid line: recorded signal; dashed line: theoretical 
result. 

/_tPa -- I m (rms) ( F = 7), it can be seen in Fig. 6 (SL = 230 
dB; F_• 15) that this signal keeps its general shape for a large 
range of the maximum emitted pressure. The main differ- 
ence between Figs. 5 and 6 is an increase of distortion in the 
&modulated signal. This phenomenon can be easily attrib- 
uted to the parametric interactions between components of 
the harmonic bands issued from the primary beam. But this 
explanation is not quite satisfactory to justify the saturation 
effect above 220 kHz, which may result from an experimen- 
tal artifact. 

IV. CONCLUSION 

The paraxial secondary farfield, created by the self-de- 
modulation of a primary beam in which the space-time spec- 
trum is narrow, has been established within a model of non- 
linear weak interactions and using Fourier formalism. This 
theoretical result is a temporal convolution of the response 

v 

FIG. 6. Parametric signal. 

[Eq. (32)] given by Berktay, with another function that 
depends upon the transducer shape and the structure of the 
interaction zone. With the help of further assumptions, even 
less restrictive than those of Stepanishen and Koenigs,•7 this 
second function can be calculated. In agreement with these 
authors, this function is found to split into the convolution 
product of the impulse response of a line source with that of 
the transducer. This impulse response of the transducer ap- 
pears generally to have a negligible influence on the final 
result. 

Thus the signal pattern is obtained on-axis in a straight- 
forward manner, and a quite easy numerical computation 
gives it when the directions of observation diverge little from 
the beam axis. The complexity of this calculation increases 
heavily when these angles become greater, but the high para- 
metric directivity removes any practical interest from this 
problem. 

Certain problems remain without solution: ( 1 ) It is dif- 
ficult to evaluate the secondary field in the complementary 
zone of the Fraunhofer area. (2) It may be asked whether 
any handy solution exists under very high nonlinear operat- 
ing conditions. (3) The origin of the strong discrepancy 
between experimental and theoretical results is not quite un- 
derstood when the parametric frequency ratio decreases. 
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