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Summary
The theory of linear passive symmetrical two-ports is reviewed. Many results of practical interest can be derived
from the very compact analytical basis of this model. However, such derivations are scattered in the literature.
In addition, the demonstrations do not always take advantage of the generality that can be obtained by avoiding
implementations built on particular applications. A complete, self consistent analysis is presented here. Atten-
tion is focused on power transfer and the relations between the impedances at each port. The specific case of
transmission lines is finally addressed.

PACS no. 43.20.Wd, 43.20.Bi, 43.20.Ks, 43.20.Mv

1. Introduction

The powerful principles of reciprocity were formulated
long ago in the optical and acoustical domains by Von
Helmholtz [1, 2] and Lord Rayleigh [3] although Lamb
[4] recognized that a generalization of these theorems
was already contained in the former Lagrange’s work [5].
Lorentz [6] extended the domain of application to electro-
magnetism. Extending the scope of the reciprocity princi-
ple is always an active field of research (e.g. [7]). Among
such works, Goedbloed [8] and Potton [9] give in-depth re-
views about reciprocity. The conditions of validity of the
reciprocity principle are also a critical issue [10]. When
properly defined, most linear passive networks are recipro-
cal although the theoretical existence of a counter-example
has been shown by Tellegen [11] with the gyrator (in the
mechanical domain, the actual existence of a passive ma-
terial that would allow to build such a system is still ques-
tioned). The formal analogy of the principle of reciprocity
across different domains of physical phenomenon has been
pointed out, in particular between electrical and mechan-
ical systems [12, 13, 14, 15]. It justifies the interest of all
general properties that can be derived from formal analy-
sis.

Another large class of systems is defined by symme-
try. The dependency of symmetry on reciprocity is not a
straightforward issue and has been thoroughly addressed
[16, 17, 18, 19]. Many physical systems exhibit both the
reciprocity and symmetry properties. Hence the related
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theorems provide powerful tools for dealing with a large
range of applications [20], addressing for example im-
pedance measurement [21, 22, 23], modeling of tubes
[24, 25], and propagation in layered media [26]. The un-
derlying concern is often power transfer.

This paper addresses the systems that can be described
by means of a passive linear symmetrical two-port black
box. Most analytical developments are known but scat-
tered in journals and textbooks. The authors think useful
to present here a synthetic view of the main results that
can be derived from the very few hypotheses that make
the basis of this model. In addition, the power transfer co-
efficients as expressed with non dimensional parameters
in section 3, as well as the precise conditions that vali-
date the approximations presented in section 3.5 have not
been found elsewhere in the literature. We are primarily
interested in the energy transfer through such a system,
and in the impedance conversion that its presence involves.
The formalism is presented without any explicit reference
to propagation equations that would be derived from the
physical phenomenon actually involved. The analysis is
performed in the context of the harmonic steady state.

The black box that represents the system is passive,
which means that it does not contain any internal source.
Energy is exchanged with the external world in a way
which can be described at each interface by a pair of
state variables: a forcing, extensive variable V , and a re-
sponse, intensive variable P . Their product represents the
power fed into or pouring out the system via each termi-
nal. The system is a linear two-port: there are two inter-
faces with a single pair of scalar conjugate variables at
each of them; linear relations link these variables. Hence
the scope of this paper does not extend to mechanical sys-
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Figure 1. Electrical scheme of a two-port.

Figure 2. Simple acoustical example of a two-port.

tems that involve generalized forces and displacements be-
cause it would require 6 ports per concerned interface [27].
We consider a symmetric system, i.e. the black box re-
mains the same when both ports are permuted. Because
of the symmetry, the system is necessarily homogeneous,
i.e. both interfaces have the same type (e.g. mechanical-
mechanical or electrical-electrical). In the acoustic do-
main, a large variety of configurations can be taken into
account, provided a pair of acoustic pressure and normal
velocity defines the conditions at each interface. With an
electrical system, P and V stand for voltages and currents,
respectively (Figure 1). Note that symmetry implies reci-
procity when dealing with a linear passive two-port.

For example, the system can be a multilayered sym-
metric media (solids and/or fluids), whose exterior faces
are parallel planes in contact with outside fluids. The def-
inition of the conjugate variables calls here for the time-
angular spectra approach (time and spatial Fourier formal-
ism). Considering the invariance of the time and spatial
frequencies in the decomposition of the pressure and nor-
mal velocity fields at each interface, P and V stand for
such spectral components at given time and spatial fre-
quencies. In the simplest situation depicted Figure 2, Port
1 and Port 2 are in contact with semi-infinite homogeneous
fluids. There is an incident plane wave (Pi, Vi) at Port 1
that is reflected (Pr, Vr), and a transmitted wave (Pt, Vt)
out of Port 2. The invariance in the frequencies translates
here through the Snell-Descartes relation between θa and
θb. Note that P1,2 and V1,2 refer to the conditions at the in-
terfaces. Note also that if the fluid b is not semi-infinite nor
homogeneous, the load condition at Port 2 is modified be-
cause the conditions (P2, V2) at the interface will take into
account an incoming, reflected wave. In case the direction
of the plane waves is normal to the interfaces (1-D propa-

gation), the restriction in the nature of the bounding media
is withdrawn. A typical example arises when studying the
power transfer between a transducer and the propagating
media through a matching layer. Amongst other examples
of application in the acoustic domain, the system can be
also a waveguide so that the conjugate variables are de-
fined with respect to any given mode.

The matrices that characterize a passive symmetrical
two-port are derived in section 2.1. The interpretation
in terms of one-way modes, as well as the introduc-
tion of the characteristic impedance, are thus straightfor-
ward. The relation between the impedances at both in-
terfaces is analyzed in section 2.2. Classical limit cases
are pointed out, in association with the propagation termi-
nology (half/quarter/one- eighth wavelength lines). Power
transfer is thoroughly addressed in section 3. The analysis
is first conducted with respect to the input impedance. The
power transfer coefficient exhibits a characteristic pattern
in its dependency on the parameters of the two-port. This
result does not seem to be known. The optimization of the
power transfer within different situations is then discussed.
In many particular problems, the parameters that describe
the media supporting the system do not depend on the di-
mension that links the interfaces. Several results displayed
in the previous sections are then furthermore expanded in
section 4 when this property applies.

2. Passive symmetrical two-port

2.1. Transfer matrix

2.1.1. Two-port

Port 1 and Port 2 are referred as input and output, re-
spectively. Note the convention of sign at the terminals
in Figure 1. It implies that power entering the system is
counted positive. For an acoustical system, it means that
the vectors normal to the interfaces used to define the nor-
mal velocities are oriented inward the system at both ports
(e.g. see Figure 2). Using this convention, the following
impedances are defined according to

Z1 = P1V
−1
1 , Z2 = −P2V

−1
2 . (1)

In the acoustical frame, Z defines a surface impedance be-
cause V refers to the spectral component of a normal ve-
locity. In equation (1), Z2 can be interpreted as the impe-
dance that loads the network, whereas Z1 stands for this
load as seen from the input interface. If Z2 is an actual
impedance load, then e{Z2} ≥ 0. Note that if the exte-
rior media that stands next to Port 2 is an homogeneous,
semi-infinite fluid devoid of any source, Z2 is simply the
characteristic impedance of this media. Furthermore con-
sidering a source applied at Port 1, the pressure P1 and the
velocity V1 at this interface cannot be independently im-
posed, their ratio Z1 being dictated by Z2 as seen through
the blackbox. One chooses to consider the source at the
input side, i.e. Port 1, and the radiating media at the out-
put side, i.e. Port 2. The converse configuration could be
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indeed considered, i.e. source at Port 2 with surface im-
pedance Z1 at Port 1. Because of the linearity, the general
case with sources on both sides can be then handled merely
by superposition.

Hence considering that there is no external source at
Port 2, let us denote ZT the shunt impedance and YT the
open admittance as seen from Port 1, i.e.

ZT = P1V
−1
1 P2=0 = Z1(Z2 = 0),

YT = P−1
1 V1 V2=0 = Z−1

1 (Z−1
2 = 0). (2)

In the electrical transmission line language, it corresponds
to measurements on the short or open circuited “stubs”. In
the acoustical field, ZT is the input impedance seen when
the output impedance is very weak; the admittance YT is
the input admittance seen when the output impedance is
very large. In both cases, the interface at Port 2 in these
idealized experiments is close to a perfect mirror.

The power that is dissipated in a passive two-port cannot
be negative, so that the real parts ofZT and YT are positive,

e ZT > 0 and e YT > 0. (3)

Note that this property proceeds from a thermodynamic
law and is always true. It does not depend on external
conditions as it is for example the case with the sign of

e{Z2} or e{Z1}. Using (2), the transfer matrix T that
describes the two-port reads

P1

V1
= T

P2

−V2
(4)

with T =
a bZT

aYT b
, (5)

a and b being two complex constants.
Equation (4) can be also reordered in terms of impe-

dance or admittance relations according to

P1

P2
= Z

V1

V2
and

V1

V2
= Y

P1

P2
, (6)

with Z = Y −1
T

1 b(1 −ZTYT )
a−1 a−1b

and Y = Z−1 = Z−1
T

1 −a(1 −ZTYT )
−b−1 ab−1 . (7)

2.1.2. Reciprocity

The straightforward definition of reciprocity is the sym-
metry of the impedanceZ (or admittance Y ) matrix. Reci-
procity implies that the determinant of the transfer matrix
is equal to unit. In the particular case of a two-port, these
properties are even equivalent, as well as the following
particular “reciprocity relation”

V1(P1 = 0, P2 = P ) = V2(P1 = P, P2 = 0). (8)

Hence any of these definitions lead to

ab 1 −ZTYT = 1. (9)

Figure 3. Equivalent electrical scheme of a reciprocal two-port
when ZT = Y −1

T . Port 1 and Port 2 are isolated from each other.

A degenerated case arises whenZT = Y −1
T : there is always

Z1 = ZT ; both sides of the network are no longer related.
There is something inside the black box that hides one port
to the other (e.g. perfect reflector). The transfer matrix T
is not defined. This case can be depicted as in Figure 3.
For now, we consider the general case ZTYT = 0.

Because of (9), the transfer matrix that describes a pas-
sive reciprocal two-port depends only on three complex
parameters (a, ZT and YT ),

T =
a a−1ZT (1 −ZTYT )−1

aYT a−1(1 −ZTYT )−1 (⇒ ||T || = 1). (10)

Equivalently, the impedance and admittance matrices read

Z = Y −1
T

1 a−1

a−1 a−2(1 −ZTYT )−1

and Y = Z−1
T

1 −a(1 −ZTYT )
−a(1 −ZTYT ) a2(1 −ZTYT )

. (11)

2.1.3. Symmetry
For a symmetrical system, it would not matter which port
is the input port and which the output port. Hence the im-
pedance Z and admittance Y matrices (7) have equal di-
agonal and antidiagonal elements: e11 = e22 and e12 = e21.
Consequently, a symmetrical two-port is also necessarily
reciprocal because the matricesZ and Y are then symmet-
rical. Hence (9) must hold, and the equality of the diagonal
terms in (11) implies in addition

a2 = 1 −ZTYT
−1

. (12)

The transfer matrix (10) is reduced to

T = a
1 ZT

YT 1
, (13)

and the impedance and admittance matrices read

Z = Y −1
T

1 a−1

a−1 1
and Y = Z−1

T

1 −a−1

−a−1 1
. (14)

A passive symmetrical two-port is thus characterized by
a transfer matrix which depends only on two parameters
(ZT , YT ), whose determinant is unit and diagonal terms
are equal. Note that the only knowledge of ZT and YT is
not sufficient to select the correct determination of the root
of a2 in (12). Additional information is needed to solve
this problem: at a very low frequency, it can be for instance
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the sign of e{P1P
∗
2 } observed when V2 = 0 which dic-

tates the sign of the real part of a. This seed being set,
complementary techniques such as phase unfolding in the
frequency domain can be deployed.

The transfer matrix T can be diagonalized according to
T = UDU−1 with

U =
Zc Zc

1 −1
and D =

ζ−1 0
0 ζ

, (15)

in which appears the characteristic impedance

Zc = ZT/YT , (16)

and the term ζ

ζ =
1 − ZTYT

1 + ZTYT

1/2

. (17)

These results can be checked in writting

T = UDU−1 =
1
2

ζ−1 + ζ (ζ−1 − ζ)Zc

(ζ−1 − ζ)Z−1
c ζ−1 + ζ

= a
1 ZT

YT 1
. (18)

Thorough the entire paper, the operator √.. stands as usual
for the root determination whose real part is positive. The
ambiguity addressed previously about the coefficient a is
now deferred to the root that defines ζ in (17). This term is
written in an exponential form by introducing the complex
factor φT ,

ζ = exp − φT

⇔ tanh φT + jkπ = ZTYT (19)

⇔ ζ = (−1)k exp − arctanh ZTYT .

The tanh function being periodic modulo π with its ima-
ginary argument, the ambiguity is now made explicit
through the integer k. With this notation, the transfer ma-
trix reads

T =
coshφT Zc sinhφT

Z−1
c sinhφT coshφT

, (20)

which comes closer than (13) to the well known transmis-
sion line relation.

From the definition of the eigenvectors [Zc,±1]t which
build the matrixU in (15), the output impedances ±Zc are
left unchanged after the transform T ,

Z2 = ±Zc ⇔ Z1 = ±Zc (21)

(same sign in each equation). These eigenvectors and val-
ues can be interpreted in terms of wave propagation as two

progressive waves that travel towards opposite directions,

T
Zc

1
= ζ−1 Zc

1
⇒

P1

V1
= V

Zc

1
Port1

→ P2

−V2
= ζV

Zc

1
Port2

,

T
Zc

−1
= ζ

Zc

−1
⇒ (22)

P1

V1
= ζV

Zc

−1
Port1

← P2

−V2
= V

Zc

−1
Port2

.

In other words, any condition at the output can be split into
two projections upon these eigenvectors,

P2

−V2
=

P2

Zc(1 + χ2)
Zc

1
+ χ2

Zc

−1
, (23)

with χ2 =
Z2 −Zc

Z2 +Zc
, (24)

which gives back to the input side:

P1

V1
=

P2

Zc(1 + χ2)
ζ−1 Zc

1
+ χ2ζ

Zc

−1
. (25)

The eigenvalue ζ (17) is the propagation operator that
transforms a wave traveling from one interface to the other,
whereas the inverse value ζ−1 in (25) accounts for retro-
propagation, i.e. finding back the wave at the interface
from where it originated. Considering that there is a source
only on the Port 1 side, the term χ2 in (24) can be in-
terpreted as the reflection coefficient observed at Port 2.
Equivalently the ratio between the forward and backward
waves at Port 1 is derived from (25),

χ1 = χ2ζ
2 =

Z1 −Zc

Z1 +Zc
. (26)

The magnitudes |χ1| and |χ2| differ on both sides only be-
cause of the losses encountered in the black box, which are
taken into account by the real part of φT . Hence because
of the convention stated above and the notation given in
(19), that real part is always positive.

2.2. Characteristic impedance, input and output
impedances

Looking now at the relation between Z1 and Z2 through
the transfer matrix (13), there is

Z1 =
Z2 +ZT

1 +Z2YT
, Z2 =

Z1 −ZT

1 −Z1YT
. (27)

It is easy to derive again directly from (27) that the char-
acteristic impedance Zc is the remarkable load value at the
output side that is seen unchanged at the input side. When-
ever Z1 and Z2 depart from this value, (27) does not give
a convenient formula that links explicitly the differences
Z2 −Zc and Z1 −Zc. Nonetheless there is

Z1Z2 = Z2
c 1 +

Z2 −Z1

Zc ZTYT

. (28)
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(28) allows to point out three particular cases that depend
on the order of magnitude of ZTYT . With the help of
(17), (19), there is

Case 1

ZTYT 1 ⇒ Z1 ≈ Z2

ζ2 ≈ 1 (29)

⇒ φT = jkπ ⇒ T = (−1)kI , (k ∈ Z) (30)

in which I denotes the 2×2 identity matix. Because
|arg(ζ)| = 0mod π, this case is related to halfwavelength
lines. The input impedance is the same as the output im-
pedance, although being not equal to the characteristic im-
pedance Zc. It implies important practical consequences.
This case is thoroughly investigated in section 3.5.

Case 2

ZTYT 1 ⇒ Z1Z2 ≈ Z2
c

ζ2 ≈ −1 (31)

⇒ φT = jπ
1
2
+ k (32)

⇒ T = (−1)kj
0 Zc

Z−1
c 0

, (k ∈ Z)

The propagation from one port to the other involves a
phase rotation of a quarter of a circle (arg(ζ) = π/2
mod π), which is the signature of the so-called quarter-
wavelength lines. The matrix T can be also interpreted as
the transfer matrix of a gyrator with gyration impedance
Zc connected in cascade with a ±π/2 phase shifting net-
work [28]: it transfers a weak impedance into a very large
impedance and vice versa. Less drastically, a λ/4 system
can be used to perform a conversion between different
impedances. For instance in the acoustic domain, a λ/4
layer with impedance Zc is used to match the low impe-
dance Z2 of a propagating medium with the high impe-
dance Z1 ≈ Z2

cZ
−1
2 of a transducer ceramic.

Case 3
Whenever the characteristic impedance Zc is real, a re-
markable property arises at the transition point for which
the norm |ZTYT | is exactly equal to unit

ZTYT = 1 and Zc ∈ R (33)

⇒ ∀Z2 ∈ R, |Z1| = Zc,
if |Z2| = Zc,∀arg{Z2}, Z1 ∈ R

Whatever is the value of a purely resistive load, the norm
of the input impedance is equal to the norm of the charac-
teristic impedance. Conversely, whenever the norm of the
load is equal to the norm of the characteristic impedance,
the input impedance is real. The propagation coefficient
and the transfer matrix can be derived without assuming
that Zc is real:

ZTYT = exp jθ ⇒ ζ2 = −j tan(θ/2) (34)

⇒ φT = −1
2
ln tan

|θ|
2

+ j sgn(θ)
π

4
+ kπ ,

⇒ T =
1
2
(−1)k

j
sin θ

(35)

· exp(−jθ/2) Zc exp(jθ/2)
Z−1

c exp(jθ/2) exp(−jθ/2)
,

(k ∈ Z). Note: θ = 0 because ZT = Y −1
T as stated in

section 2.1.2.
This situation is known [29] as a λ/8 impedance trans-

former (|arg(ζ)| = | m{φT}| = ±π/4mod π).

3. Power transfer

3.1. Notations

We study here the power transfer from a source at the in-
put of a passive linear symmetrical two-port, whose trans-
fer matrix is given in (13), towards an impedance Z2 that
loads the output. The definition and meaning of Z2 has
been already discussed at the beginning of section 2. With
electrical systems or acoustical waveguides, the source
supplies energy per time unit. With systems that involve
plane interfaces (and therefore angular spectra), the source
delivers energy per time unit and per surface unit. In the
following, we use the terminology “power” for both mean-
ings.

The source delivers the powerW1 through the input port

W1 =
1
2

e P1V
∗
1 =

1
2
|P1||V1| cos θ1 (36)

with θ1 = arg{Z1}.
(X∗ denotes the complex conjugate of X).

Let us recall that with acoustic systems, (P1, V1) refers
to the conditions at the input interface. Hence in the ex-
ample given with Figure 2, W1 should not be confused
with the power associated with the incoming incident wave
(Pi, Vi).

The power W2 that is dissipated in the load Z2 reads

W2 = (37)
|1+ZTY

∗
T ||P1||V1| cos δ1 − e{YT}|P1|2 − e{ZT}|V1|2

2|1 −ZTYT |
with δ1 = θ1 − arg{1 +ZTY

∗
T }. (38)

The power delivered by the source and the power dissi-
pated by the load are related through

W2 =
µ

2
|P1||V1| = ηW1 (39)

with µ = η cos θ1 ≤ η < 1.

The coefficient η gives the relative amount of power that is
actually transferred from the source to the load: the two-
port dissipates the ratio 1−η of the total power delivered by
the source. The coefficient µ characterizes the fraction of
power that is dissipated in the load compared to the max-
imal power |P1||V1|/2 that the source can potentially de-
liver with the amplitudes |P1| and |V1|:

µ =
|1 −ZTYT | e{Z2}
|1 +Z2YT ||Z2 +ZT |

(40)

=
e (Z1 −ZT )(1 −Z∗

1Y
∗
T )

|1 −ZTYT ||Z1|
.
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3.2. Optimal input impedance

3.2.1. Optimal phase

Given the amplitudes |P1| and |V1| at the input side, one
seeks first at the phase θ1 of the impedance Z1 that maxi-
mizes the power W2 dissipated in Z2. Hence µ is maximal
when δ1 = 0 (38), i.e.

θ1opt = arg 1 +ZTY
∗
T (41)

i.e. Z1 = |Z1|
1 +ZTY

∗
T

|1 +ZTY
∗
T |

.

When this condition on the phase is true, the power that is
dissipated in the load Z2 reads

W2 =
(Rmin + Rmax)|P1||V1| − |P1|2 −RminRmax|V1|2

2(Rmin − Rmax)

=
Rmax

Rmin − Rmax

|pv|
2

, (42)

with

|p| = |P1| −Rmin|V1|, |v| = |V1| −R−1
max|P1|

and

Rmin =
2 e ZT

|1 +ZTY
∗
T | + |1 −ZTYT |

, (43)

R−1
max =

2 e YT

|1 +ZTY
∗
T | + |1 −ZTYT |

.

It can be checked that there is always 0 < Rmin < Rmax.
The locus of the solutions (|P1|, |V1|) that lead to dissipate
at best the given power W2 in the load is the hyperbola
with axes |p| = 0 and |v| = 0 (see Figure 4). All the phys-
ical solutions are necessarily located in the sector that is
bounded by these two half lines: the power that is dissi-
pated in the load cannot be negative. In other words, the
real part of the load Z2 being positive, the norm |Z1| is in
the range

Rmin < |Z1| < Rmax. (44)

Let us introduce the geometrical mean Rm of the resis-
tances Rmin and Rmax,

Rm = RminRmax =
e{ZT}
e{YT}

. (45)

Notice that Rm is not equal to Zc. In order to browse the
domain of variation of the norm |Z1| (44), one uses the
scalar parameter σ that is defined in the domain [0, 1] so
that |Z1|(σ = 0) = Rmin and |Z1|(σ = 1) = Rmax:

|Z1|(σ) = R1−σ
min R

σ
max = Rm

Rmin

Rmax

0.5−σ

, (46)

with 0 < σ < 1.

Figure 4. Power transfer optimization.

When the phase ofZ1 is optimal, the transfer coefficient
µ is equal to

µδ1=0(|Z1|) =
(Rmax − |Z1|)(|Z1| −Rmin)

|Z1|(Rmax − Rmin)
(47)

=
1
β

1− 1−β2 cosh σ−0.5 ln
1−β

1+β
,

in which is introduced the coefficient β that characterizes
the relative difference between the resistances Rmin and
Rmax,

0 < β =
Rmax − Rmin

Rmax + Rmin
=

1 −ZTYT

1 +ZTY
∗
T

< 1,

Rmin

Rmax
=

1 − β

1 + β
. (48)

Whenever the orders of magnitude (29) or (31) hold, then
the coefficient β tends towards unity, which is equivalent
to Rmin Rmax.

Figure 5 shows the mapping of µδ1=0(β, σ). One ob-
serves the following properties

µδ1=0
✲

σ→0 or 1
0, µδ1=0

✲
β→0

0,

µδ1=0
✲

β→1 with
0.5−|σ−0.5| 1

1. (49)

The latter approximation close to the limit β = 1 should
not hide the sharp evolution of µ(β), as well as the sharp
variation of µ(σ) in the vicinity of the boundaries σ = 0
and σ = 1,

∂µδ1=0

∂β 0.5−|σ−0.5| 1
✲

β→1
+∞. (50)

From (47), the power transfer is maximal when

σ = 1/2, i.e. |Z1|opt = Rm. (51)
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Figure 5. (a) µ(β, σ, δ1 = 0). Bold black: µopt = µ(σ = 1/2, δ1 =
0), bold red: |P1| constant, bold blue: |V1| constant. (b) Projec-
tion. Solid black: µopt(β) = µ(β, σ = 1/2, δ1 = 0), blue/red:
µopt constant |P1 | or |V1 |(β) = β/2.

Given the dissipated power W2, the power that is required
at the source is thus minimal when the load Z2 is equal to

Z2opt =
Z1opt −ZT

1 −Z1optYT

=
e{ZT} − j m{Z1opt}

e{YTZ1opt}
(52)

=
e{ZT} e{YT} − j sin θ1opt

e{YT exp(jθ1opt)}
,

with

Z1opt = Rm exp(jθ1opt). (53)

The coefficient µ is then equal to (see Figure 5b)

µopt = µδ1=0 |Z1opt| = µδ1=0 β, σ = 1/2 (54)

=
Rmax − Rmin

Rmax + Rmin

= β−1 1 − 1 − β2 .

It can be noticed also that

β

2
< µopt =

β

1 + 1 − β2
< β ≤ 1. (55)

Figure 6. Relative power transfer coefficient ξ = µ/µopt =
µ(β, σ)/µ(β, 1/2).

Figure 6 exhibits the coefficient µ relatively to the max-
imal values µopt, when the only phase is optimal,

ξδ1=0 β, σ =
µδ1=0

µopt
(56)

=
1 − 1 − β2 cosh σ − 0.5 ln 1−β

1+β

1 − 1 − β2
.

The following limits can be observed in this figure

ξ ✲
β→1,

0.5−|σ−0.5| 1

1

and ξ ✲
β→0

ξ0 = 1 − 4(σ − 0.5)2. (57)

As for the function µ(β, σ), the straightforward limit of
ξ when β is close to unit is misleading: there is still a
sharp change in the vicinity of the boundaries σ = 0
and σ = 1. Also, ξ(β) varies very rapidly. On the other
hand, the ratio ξ is close to the function ξ0 (57) as long
as β remains not too close to unit. In addition there is al-
ways ξ(β, σ) > ξ0(σ), which shows that ξ0 is a worse es-
timate of ξ. Consequently, the lack of transfer is smaller
than −3 dB (half-power) as long as the norm of the in-
put impedance remains in the range dictated by (46) with
σ = 0.5 ± 0.5/

√
2. When β is close to unit, the tolerance

limits are larger, but there is no elementary approximation
– e.g. a polynomial expression – to quantify this gain.

Let us recall that the optimal solution (52) can be
reached only if the source at the input interface can sup-
ply the following amplitudes

|P1| = 2|Z1opt|µ−1
optW2,

|V1| = 2|Z1opt|−1µ−1
optW2, (58)

in which |Z1opt| and µopt are given by (51) and (54).

3.2.2. General case (non optimal phase)
In the general case, i.e. when the phase is not optimal, the
power that is dissipated by the load Z2 (37) can still be
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written in terms of the previously defined parameters δ1
(38), Rmin and Rmax (43), and β (48),

W2 = (59)
(Rmin + Rmax)|P1||V1| cos δ1 − |P1|2 −RminRmax|V1|2

2(Rmax − Rmin)

=
rmax

Rmax − Rmin

|p v |
2

,

with

|p | = |P1| − rmin|V1|, |v | = |V1| − r−1
max|P1|

and

rmin =
1 + β

cos δ1 + β2 − sin2 δ1
Rmin,

r−1
max =

1 + β

cos δ1 + β2 − sin2 δ1
R−1

max. (60)

The geometrical mean of rmin and rmax is the same as when
the phase is optimal,

√
rminrmax = RminRmax = Rm. (61)

The phase θ1 ofZ1, and consequently the difference δ1, are
constrained by the impedanceZ2, which translates into the
inequality

| sin δ1| ≤ β ≤ 1. (62)

Being given the phase difference δ1, the locus of the solu-
tions (|P1|, |V1|) that lead to dissipate at best a given power
W2 in the load is the hyperbola whose axes are |p | = 0 and
|v | = 0. The physical solutions lay in a sector bounded by
two lines whose angle is now smaller than if the phase is
optimal,

Rmin ≤ rmin ≤ Rm ≤ rmax ≤ Rmax (63)

and

0 ≤ rmax − rmin

Rmax − Rmin
= 1 − β−2 sin2 δ1 ≤ 1.

The domain [rminrmax] of the norm |Z1| can be browsed
again with the parameter σ which is now defined so that
|Z1|(σ = 0) = rmin and |Z1|(σ = 1) = rmax.

|Z1|(σ, δ1) = r1−σ
min r

σ
max = Rm

rmin

rmax

0.5−σ

, (64)

with 0 < σ < 1.
With these notations, the general expression of the

transfer coefficient µ (40) reads

µ =
(rmax − |Z1|)(|Z1| − rmin)

|Z1|(Rmax − Rmin)
(65)

=
1
β

cos δ1 − 1 − β2 cosh σ − 0.5 ln
rmin

rmax
,

where

rmin

rmax
=

cos δ1 − β2 − sin2 δ1

cos δ1 + β2 − sin2 δ1
. (66)

This result can be compared with (47), in which in partic-
ular Rmin/Rmax is given by (48). Given a constant mod-
ule |Z1|, the loss of efficiency because of the non optimal
phase (δ1 = 0) can be quantified with

µδ1=0(|Z1|) = µδ1=0(|Z1|) − 2β−1 sin2(δ1/2), (67)

recalling that this latter expression is only meaningful as
long as rmin < |Z1| < rmax.

When the phase is not optimal, the maximal transfer is
still obtained with the same norm |Z1opt| = Rm as when the
phase is optimal (see equation 51). The transfer coefficient
is

µδ1 (|Z1opt|) = β−1 cos δ1 − 1 − β2 . (68)

to be compared with (54).

3.3. Optimal source at constant pressure or constant
velocity

The previous developments are founded on the search for
maximal transfer coefficients without any constraints on
the amplitudes |P1| and |V1| at the input interface, but for
their ratio. This section addresses the conditions that max-
imize the amount of power dissipated in the load, being
given a constant amplitude |V1| or |P1| at the source. It
comes back to look at the hyperbola that are tangent to the
lines V = |V1| and P = |P1|. The condition (41) about the
phase of the input impedance is still assumed to be fulfilled
(δ1 = 0).

Given a constant amplitude |V1|, the configuration that
leads to the maximal power dissipation in the load is de-
rived by solving dW2/dP1 = 0. From (27), (42), there is

|Z1| =
1
2

Rmin + Rmax ⇒

Z1 =
1 +ZTY

∗
T

2 e{YT}
⇒ Z2 = Y ∗−1

T . (69)

Accordingly given a constant amplitude |P1|, the input im-
pedance that leads to dissipate the maximal power in the
load is obtained by solving dW2/dV1 = 0. From (27),
(42), there is

|Z1|−1 =
1
2

R−1
min + R−1

max ⇒

Z1 =
2 e{ZT}
1 +Z∗

TYT

⇒ Z2 = Z∗
T . (70)

In both cases, the transfer coefficient µδ1=0 is reduced to

µ0 = β/2 = (1 + 1 − β2)µopt/2 ≥ µopt/2. (71)
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Hence µ0 is larger than half the optimal transfer coeffi-
cient. The solutions (69) and (70) correspond to the fol-
lowing locus of the parameters (σ, β),

σ−1 =




1 − ln(1 + β)
ln(1 − β)

at const. |V1|,

1 − ln(1 − β)
ln(1 + β)

at const. |P1|.
(72)

The curves that represent equations (71), (72) are drawn
in red and blue in Figures 5–6.

When the orders of magnitude (31) or (29) apply, β ≈ 1
so that µ0 ≈ 1/2.

3.4. Input impedance equal to load

The equality of the impedances Z1 and Z2 with the char-
acteristic impedance Zc (21) does not satisfy a priori the
criteria that optimize the power transfer. From (39), (40),
the transfer coefficients read in that case

Z1 = Z2 = Zc ⇒ (73)


µc = ηc cos(arg{Zc}),

ηc =
1 − ZTYT

1 + ZTYT

= ζ∗ζ = exp −2 e{φT} < 1.

When the orders of magnitude (31) or (29) apply, there is
no significant power dissipation in the two-port,

ZTYT 1

or ZTYT 1
and Z1,2 = Zc ⇒ ηc = 1. (74)

At the transition configuration (34), the transfer coefficient
η reads

ZTYT = 1 and Z1,2 = Zc ⇒ (75)

ηc = tan
1
2
arg ZTYZ .

In that case, there is no loss in the network if

arg ZTYT ≈ π/2,

which can be fulfilled only if ZT and YT are both pure
imaginary parameters (equation (3) and ZTYT ∈ R−).

According to its definition, the characteristic impedance
Zc is real only if the phases of ZT and YT are equal. When
this condition is met, the optimal phase of Z1 (41) is null
(ZTY

∗
T ∈ R), and Z2 = Z1 = Zc is the optimal solution

given by (45), (52), (53),

arg ZT = arg YT ⇒ (76)

Z2opt = Z1opt = Zc ∈ R+∗.

The expression of ηc is still given by (73), but Zc is now
real so that

µc = µopt = ηc = ηopt. (77)

The efficiency of the source and the power transfer are
close to perfect (µ = η = 1) whenever (74), or (75) to-
gether with ZTYT ∈ R−, applies.

3.5. Particular case |ZT | |Y −1
T |

Several additional results can be derived in the particular
case of practical interest defined by the following order of
magnitude:

|ZTYT | 1. (78)

Recalling that the real parts ofZT and YT are both positive,
it must be kept in mind in the derivations of this section
that (3), (78) are equivalent to

0 <
e ZT

m ZT
≤ ZT (79)

Y −1
T ≤ e−1 YT

m−1 YT
.

It implies straightforward approximations on parameters
introduced in section 3.2,

θ1 ≈ δ1, β → 1,
Rmin ≈ e ZT

R−1
max ≈ e YT

and
rmin ≈ Rmin/ cos θ1,
r−1
max ≈ Rmax/ cos θ1,

. (80)

An important consequence is that the phase of Z1 is op-
timal when being null. Also from the definition (16), the
order of magnitude of the characteristic impedance Zc is
such that

ZT Zc Y −1
T . (81)

On the other hand, it has been already pointed out that
β being close to unit does not necessarily imply obvious
simplifications on the transfer functions.

The norms |Z1| or |Z2| cannot have simultaneously the
same order of magnitude as |YT |−1 and |ZT |. In addition,
(27) shows that |Z1| and |Z2| share the same order of mag-
nitude relatively to |YT |−1 and |ZT |. In other words, one
of the following non exclusive propositions is necessarily
true, and depending on the case, the differences between
impedances or between admittances, as well as the trans-
fer coefficient µ (40) read

Z1 Y −1
T ⇔ Z2 Y −1

T

⇒ Z1 −Z2 ≈ ZT ,

µ = cos θ1 − Z1
−1

e ZT ,
(82)

or

ZT Z1 ⇔ ZT Z2

⇒ Z−1
1 −Z−1

2 ≈ YT ,
µ = cos θ1 − Z1 e YT .

In any instance, provided the impedance Z1 is not essen-
tially reactive (tan θ1 1), the fraction of power that is
dissipated in the network is given by

1 − η = e−1 Z1 e ZT (83)

+ e−1 Z−1
1 e YT .
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The results stated in (82), (83) lead to interesting sim-
plifications if additional conditions are introduced. Hence,
when both orders of magnitude given in (82) are simulta-
neously met, the load as seen through the network is not
significantly modified, although the common value can de-
part from the characteristic impedance Zc. That is the re-
sult already pointed out in (29). In addition, still provided
the impedance Z1,2 is not essentially reactive, the coeffi-
cient µ can be directly estimated from the argument θ2 of
the load impedance (because θ1 = θ2), and the power that
is dissipated in the network is negligible,

ZT Z1,2 YT
−1

and tan θ1,2 1
(84)

⇒

Z1 = Z2,
µ = cos θ1,2,
η = 1.

In order to complete the discussion, it can be checked that
when |θ1,2| is close to π/2, there is stillZ1 = Z2, the trans-
fer coefficient µ tends toward zero, but η is not necessarily
equal to unit.

Starting from (82), (83), another condition of great
practical importance that is less restrictive than (84) and
that still leads to a negligible relative amount of power dis-
sipated in the network can be also derived,

e ZT Z1,2 e−1 YT

and tan θ1,2 1
(85)

⇒ µ = cos θ1,
η = 1.

Compared to (84), the load Z2 and the impedance Z1 seen
at the input are not necessarily equal, but the possible sig-
nificant differences in the impedances Z1,2 or admittances
Z−1

1,2 are an imaginary component

tan θ1,2 1 and





e ZT Z1,2 YT
−1

⇒ Z1 −Z2 ≈ j m ZT

or

ZT
−1

Z1,2 e−1 YT

⇒ Z−1
1 −Z−1

2 ≈ j m YT .

(86)

The only conditions (78) and (85) leave a large range
in the choice of Z1, which thus can differ significantly
from the characteristic impedance Zc, still avoiding power
losses in the network. Nevertheless, the source does not
necessarily work in an optimal regime because it provides
only the ratio cos θ1 of the total power that could be po-
tentially delivered. For the source to work optimally, the
input impedance Z1 must be purely resistive,

e ZT Z1 = R e−1 YT

⇒ µ = η ≈ 1. (87)

The condition on phase (41) is indeed reduced here to θ1 =
0. The main difference with the general case |ZTYT | 1

Figure 7. Equivalent electrical schemes of the optimal adaptation
when |ZTYT | 1, at constant input pressure (a) and constant
velocity (b).

is that the constraint (51) about the norm is no longer
needed to achieve an optimal transfer. (86) gives straight-
forwardly the imaginary component that the load impe-
dance or admittance (Z2 or Z−1

2 ) must have for the input
impedance to be purely resistive in (87). If the imaginary
part of the load does not compensate exactly for the net-
work influence, (86) can still be used to estimate the input
phase θ1, so that (85) gives the corresponding decrease in
the transfer factor µ.

Concerning the optimal solutions at constant input ve-
locity or pressure, results given in section 3.3 are easily
translated when (78) applies. The transfer coefficients µ
and η are equal,

µ = η = 0.5. (88)

At constant input amplitude |P1|, the optimal solution is
reached with

Z2 = Z∗
T ⇒ Z1 = 2 e ZT . (89)

At constant input amplitude |V1|, there is

Z2 = Y ∗−1
T ⇒ Z1 = 2 e YT

−1
. (90)

The solutions (89) and (90) are the very classical results
shown in Figure 7.

4. Transmission line

4.1. Morphism

Let us consider a family of passive linear symmetrical two-
ports {T x} which realizes the following morphism from
(R,+) into ({T },×):

∀x, y ∈ R, T x+y = T xT y. (91)

This property appears in many applications where the real
parameter x is a length. Equation (91) may apply when-
ever the parameters describing the media that supports the
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studied phenomenon do not depend on the x parameter,
whereas a single pair of intensive and extensive variables
(Px, Vx) can be associated to each value of x. A classical
example is the modeling of an electrical cable: the trans-
fer matrix associated with a piece of the line is equal to
the product of the matrices associated with all parts that
build any partition of the initial piece. In the acoustical do-
main, other trivial examples are obtained when studying
propagation between two planes (with distance x) in a ho-
mogeneous media or in a tube with constant cross section.
The model is also valid whatever the dispersive character
of the propagation is (e.g in waveguides).

Let us denote Zx = ZT and Yx = YT the parameters
associated with the matrix T x. The commutativity of (91)
implies that the ratio Zx/Yx does not depend on the length
x,

∀x, Zx/Yx = Z2
c . (92)

That is why (16) can be said to define the characteristic
impedance of a media when (91) holds.

In the decomposition (15), there is only the diagonal
matrixD that depends on the length x. Hence the property
(91) incorporates into this matrix according to

∀x, y ∈ R, Dx+y = DxDy ⇒ ζx+y = ζxζy. (93)

Consequently the function ζ given by (17), (19) has nec-
essarily the exponential form

ζx = exp − Γx , i.e. φx = Γx. (94)

This form enlightens the comments associated with (23),
(25) as it looks much more familiar with the 1-D propaga-
tion operator of a harmonic wave: Γ is the complex prop-
agation constant in which the term depending on time is
omitted. It is usually expanded as the sum of a real attenu-
ation coefficient and an imaginary wave number,

Γ = α + j
2π
λ

, (95)

(α > 0, see convention at end of section 2.1.3). Equation
(19) now reads

ZxYx = tanh Γx . (96)

One introduces the set of new variables Z and Y with

Z/Y = Zc = Zx/Yx and ZY = Γ. (97)

By combining (92) and (96), the relations between
(Zx, Yx) and (Z, Y ) expand as

Zx = Zc tanh Γx = Zc tanh x ZY ,

Yx = Z−1
c tanh Γx = Z−1

c tanh x ZY ,Z = x−1Zc arctanh ZxYx − jkπ ,

Y = x−1Z−1
c arctanh ZxYx − jkπ .

(98)

The ambiguity modulo π of the imaginary parts of Z and
Y occurs because the tanh function is periodic with its
imaginary argument (see equation 19). In practical appli-
cations where Z and Y are to be derived from measure-
ments of (Zx, Yx), this ambiguity can be solved by using
for instance a phase unfolding technique in the frequency
domain.

Knowing the parameters Z and Y , the transfer matrix of
the two-port corresponding to any length x can be derived
by replacing (94) into (20),

T x =
cosh Γx Zc sinh Γx

Z−1
c sinh Γx cosh Γx

. (99)

Equation (99) is the well known transfer matrix of a trans-
mission line.

Whenever the following condition is met:

Γx
2

1, (100)

the first order development of the tanh function in (98)
leads to the approximation

Zx ≈ ZcΓx = Zx,

Yx ≈ Z−1
c Γx = Y x.

(101)

The terms Z and Y now clearly appears to be respec-
tively the shunt impedance and the open admittance per
unit length. Hence, the transmission media is entirely de-
scribed by either this pair (Z, Y ) of complex values per
unit length, or the set made of the characteristic impedance
Zc and the propagation coefficient Γ.

4.2. Evolution with length

It has been seen in the previous sections that the behavior
of the system depends largely on the order of magnitude
of |ZxYx|. It is therefore interesting to study the evolution
of this norm with x. Replacing by the notation (95) in (96)
leads to

ZxYx ≈ cosh(2αx) − cos(4πx/λ)
cosh(2αx) + cos(4πx/λ)

. (102)

For this analysis, it is assumed that αλ 1. In addition,
the domain for the parameter x is limited to [0, xmax

α−1]. Both conditions are not actually restrictive in most
practical situations. Hence, the hyperbolic terms can be
replaced by the first order development close to unit. In
addition, the argument 2αx varies slowly with x compared
to the oscillations of the trigonometric terms whose argu-
ment is 4πx/λ. The numerator and denominator in (102)
take simultaneously opposite extreme values at abscissa

xk = k λ/4 (k ∈ N). (103)

The even and odd indices k correspond to peaks of
|ZxYx|−1 and |ZxYx|, respectively. In the vicinity of these
extrema, there is the development

|ZxYx|−1(x2m + δx)
or |ZxYx|(x2m+1 + δx)

≈ (αx)−2 1 +
2πδx
αλx

2 −1

, (104)
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Figure 8. |ZxYx| in log scale computed with αλ = 10−2.

with |δx| λ/(2π).
The order of magnitude of the maximal amplitude, at

δx = 0, is

(αx)−2 = (k/4)−2(αλ)−2 1. (105)

From either side of these peaks, the norm decreases by half
for a length shift of

Δx = αλx/(2π), i.e.
Δx

xk
≈ αλ

2π
1, (106)

which is a very narrow band from the hypothesis. We are
more specifically interested in conditions that lead to (31),
or conversely (29). The additive unit constant in the sec-
ond term of (104) can thus be neglected. One finds

|x − mλ/2| < √
ελ/(2π) ⇒ |ZxYx| < ε,

or
|x − (m + 1/2)λ/2| < √

ελ/(2π) ⇒ |ZxYx| > ε−1.
(107)

The relative width of these bands is equal to 2
√
ε/(mπ).

Hence looking at the evolution of |ZxYx| with x, there is a
regular succession of alternating extrema, the norm being
equal to unit in between at abscissa xk+1/2 (see Figure 8).

Looking more closely at the minima of |ZxYx|, it can be
noticed that (100) implies

ZxYx 1. (108)

It corresponds to the part of the curve close to the origin in
Figure 8, i.e. short lengths,

x <
√
ελ/(2π) ⇒ ZxYx < ε. (109)

Conversely (108) which holds for the other minima does
not imply the linear relation (101). However noteworthy
relations can be still derived,

ZxYx = tanh2(Γx − jkπ) 1

⇒ ∃m ∈ Z, Γx − jmπ 1

⇒ Zx ≈ Zc(Γx − jmπ),
Yx ≈ Z−1

c (Γx − jmπ).
(110)

Hence we obtain the following generalization of (101):

ZxYx 1

⇒ ∃m ∈ Z,
Zx ≈ Zx − jZcmπ,
Yx ≈ Y x − jZ−1

c mπ.
(111)

5. Conclusion

The power transfer coefficient through a two-port system
has been expressed by means of two non-dimensional pa-
rameters: β which is a characteristic parameter of the two-
port, and σ that depends on the external impedance load.
A typical behavior of the relative power transfer coeffi-
cient has been put in evidence when β is not too close to
unit (see Figure 6).

A thorough analysis of what is interpreted as a half-
wavelength line in most applications has been performed.
It accounts also for the case of systems whose length is
much smaller than the wavelength. Beyond the trivial re-
sult that such a two-port may have then little influence in
the power transfer from one port to the other, we exhib-
ited simple and accurate relations between input and out-
put impedances, together with the precise conditions of va-
lidity for these approximations (see equation 86). Accord-
ingly, the power transfer coefficient can be close to unit
even though the loading impedance is different of the char-
acteristic impedance, but the limits for which this property
holds are asserted.

As far as passive, linear, symmetrical two-ports are in-
volved, the results displayed in this paper can give interest-
ing insights whatever the domain of application. Waveg-
uides in acoustics and transmission line in the electrical
domain are obvious fields of concern.
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