Feuille de TD 6 : espaces vectoriels

Exercice 1. Vérifier que les ensembles suivants sont des \mathbb{R} -espaces vectoriels.

- (a) $A = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}.$
- (b) L'ensemble des polynômes $P \in \mathbb{R}[X]$ tels que P'(7) = 0.
- (c) L'ensemble des fonctions en escalier sur [0, 1].

Exercice 2. Les ensembles suivants sont-ils des sous-espaces du \mathbb{C} -espace vectoriel des suites complexes?

- (a) L'ensemble des suites convergentes.
- (b) L'ensemble des suites divergentes.
- (c) L'ensemble des suites bornées.
- (d) L'ensemble des suites réelles.
- (e) L'ensemble des suites (u_n) telles que $u_n \sim 1/n$.
- (f) L'ensemble des suites (u_n) telles que $u_n = o(1/n)$.
- (g) L'ensemble des suites (u_n) telles que $u_n = O(1/n)$.

Exercice 3. Soient E un espace vectoriel et F_1 , F_2 deux sous-espaces vectoriels de E. Prouver que $F_1 \cup F_2$ est un sous-espace vectoriel si et seulement si $F_1 \subset F_2$ ou $F_2 \subset F_1$.

Exercice 4. On se place dans le \mathbb{Q} -espace vectoriel \mathbb{R} .

- (a) A-t-on $\sqrt{2} \in \text{Vect}(1)$?
- (b) A-t-on $\sqrt{3} \in \text{Vect}(1, \sqrt{2})$?

Exercice 5. Pour tout réel a, on note $f_a: x \mapsto e^{ax}$. Soient des réels $a_1 < \cdots < a_n$. Montrer que $(f_{a_1}, \ldots, f_{a_n})$ est une famille libre de $\mathbb{R}^{\mathbb{R}}$.

Exercice 6. Donner une base des \mathbb{R} -espaces vectoriels suivants, ainsi que leur dimension.

- (a) $A = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}.$
- (b) $B = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z = 2x + 3y + z + 4t = 0\}.$

Exercice 7. Soit $S_n = \{A \in M_n(\mathbb{R}) \mid {}^tA = A\}$. Prouver que S_n est un sous-espace vectoriel de $M_n(\mathbb{R})$. Quelle est sa dimension?

Exercice 8. Soit la subdivision $\sigma = \{0, 1, 2\}$ de [0, 2]. Démontrer que l'ensemble des fonctions en escalier associées à σ est un espace vectoriel de dimension 5.

Exercice 9. Avec des polynômes...

- (a) Soient P_0, \ldots, P_n des polynômes réels tels que deg $P_k = k$ pour $k = 0, \ldots, n$. Prouver que (P_0, \ldots, P_n) est une base de $\mathbb{R}_n[X]$.
- (b) Montrer que $(X + 1, X 1, X^2 + 2X)$ est une base de $\mathbb{R}_2[X]$ et donner les coordonnées de X^2 dans cette base.
- (c) Dans le \mathbb{C} -espace vectoriel $\mathbb{C}[X]$, on considère le sous-ensemble A des polynômes impairs (i.e. les combinaisons linéaires de puissances impaires de X), ainsi que $B = \{XP(X) \mid P \in A\}$. Vérifier que ce sont des sous-espaces. Quelle est leur somme ?

Exercice 10. On se place dans le \mathbb{R} -espace vectoriel $\mathbb{R}^{\mathbb{R}}$.

- (a) Prouver que (sin, cos) est une famille libre.
- (b) Montrer que Vect(sin, cos) est l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ telles qu'il existe des réels A et ϕ pour lesquels on peut écrire

$$\forall x \in \mathbb{R}, \quad f(x) = A\sin(x + \phi).$$

Exercice 11. Soit E un espace vectoriel de dimension n. Un hyperplan de E est un sous-espace vectoriel de E de dimension n-1. Calculer la dimension de $H_1 \cap H_2$ si H_1 et H_2 sont deux hyperplans distincts de E.

Exercice 12. Soit E l'espace vectoriel des fonctions continues de [0,1] dans \mathbb{R} . On note F_1 l'ensemble des fonctions continues d'intégrale nulle et F_2 l'ensemble des fonctions constantes, sur [0,1].

- (a) Vérifier que F_1 et F_2 sont deux sous-espaces vectoriels de E.
- (b) Prouver que $F_1 \cap F_2 = \{0\}$.
- (c) Montrer que $F_1 \oplus F_2 = E$.
- (d) Ecrire $f: x \mapsto xe^x$ comme somme d'un élément de F_1 et d'un élément de F_2 .

Exercice 13. Soit S le \mathbb{C} -espace vectoriel des suites complexes (u_n) vérifiant la relation de récurrence $u_{n+2} = 3u_{n+1} - 2u_n$ pour tout indice n.

- (a) Donner une base de S.
- (b) Quels sont les éléments (u_n) de S tels que $u_0 = 1$ et $u_1 = 3$?
- (c) Quelles sont les suites réelles appartenant à S?

Exercice 14. Déterminer les suites complexes (u_n) vérifiant les relations de récurrence suivantes, avec les conditions initiales suivantes.

- (a) $u_{n+2} = 2u_{n+1} 2u_n$, avec $u_0 = u_1 = 1$.
- (b) $u_{n+2} = (2+2i)u_{n+1} 2iu_n$, avec $u_0 = 1$ et $u_1 = 0$.