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The aim of this work is to present a method to find and analyze maximum propulsive efficiency kinematics for a
birdlike flapping-wing unmanned aerial vehicle using multiobjective evolutionary optimization and data-mining
tools. For the sake of clarity and simplicity, simple geometry (rectangular wings with the same profile along the span)
and simple kinematics (symmetrical harmonic dihedral motion) are used. In addition, it is assumed that the birdlike
aerial vehicle (for which the span and surface area are, respectively, 1 m and 0.15 m?) is in horizontal motion at low
cruise speed (6 m/s). The aerodynamic performances of the flapping-wing vehicle are evaluated with a semi-
empirical flight physics model and the problem is solved using an efficient multiobjective evolutionary algorithm
called -MOEA. Groups of attractive solutions are defined on the Pareto surface, and the most efficient solutions
within these groups are characterized. Given the high dimensionality of the Pareto surface in the kinematic
parameters space, data-mining techniques are used to conduct the study. First, it is shown that these groups can be
qualified versus the whole Pareto surface by accurate mathematical relations on the kinematic parameters. Second,
the inner structure of each group is studied and highly accurate mathematical relations are found on the optimized

parameters describing the most efficient solutions.

Nomenclature
A, = amplitude associated with the nth harmonic, °
AR = wing aspect ratio
B, = even Fourier coefficient of 1 for the nth harmonic, °
b/2 = semispan length, m
Cy4, = section friction-drag coefficient
C, = aerodynamic moment coefficient
C,, = section pitching moment coefficient about its
aerodynamical center
C = odd Fourier coefficient of 1 for the nth harmonic, °
C, = lift coefficient
C, = targetlift coefficient
¢ airfoil chord, m
DC. = liftlag, defined in Eq. (10)
e section distance between the leading edge and the
elastic axis, m
fy = frequency of the dihedral motion, Hz
g = acceleration of gravity, m/s?
L lift force, N
M = mass, kg
M., = norm of the aerodynamic moment
M, = pitching moment
N normal force to wing’s chord, N
P = power, W
S = wing area, m?
T thrust, N
T = time,s
V., cruise velocity, m/s
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oy angle of section’s zero-lift line, °
n propulsive efficiency
s = leading-edge suction efficiency
[’} = pitch angle of chord with respect to U
6, = pitch angle of flapping axis with respect to U
6, = mean pitch angle of chord with respect to flapping axis
o = atmospheric density, kg/m?
¢, = phase associated with the nth harmonic, rad
Yr = dihedral angle, °
- = time average
= time derivative
Subscripts
ac = aerodynamic center
c = circulation
in = input
max = maximum
min = minimum
sep = separated flow

I. Introduction

HROUGHOUT time, the flight of birds has stimulated the

scientific community to conceive vehicles that fly like birds [1],
which led to the apparition of flapping-wing unmanned aerial
vehicles (UAVSs). These kinds of UAVs have many advantages over
existing ones. First, they can fly with suppleness at low speeds
without the loss in performance experienced by fixed-wing UAVs.
Second, their acoustic signature is much more diffuse than rotorcraft
UAVs, which makes them difficult to spot. Finally, they can hover
and take off vertically. Many projects focused on building birdlike
flapping-wing UAVs: the omithopter project of DeLaurier [2—4], the
PRF REMANTA (Research Programme on Microvehicle and New
Technologies Application) [5], or the ROBUR project (the name
comes from anovel by Jules Verne) [6]. Within each of these projects,
the scientists tried to optimize the design of flapping-wing aerial
vehicles to increase their efficiency (lift, lift to drag ratio, energy
consumption, etc.). Currently, an important part of the research and
development community works on conceiving the most energy-
efficient airfoil adaptation and wing motion technologies able to
provide the required aerodynamic loads for UAV flights. For
instance, Khan and Agrawal [7] designed and optimized a flapping-
wing mechanism for micro air vehicles. Hall et al. [8,9] presented a
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Betz-criterion method to compute the minimal power in forward
flight and gave some useful trends of variation for the thrust, the lift,
and the propulsive efficiency as functions of the flapping amplitude
and the frequency. Similarly, Willis et al. [10] presented a quasi-
Newton method to minimize the flight power of omithopters in cruise
flight. Berman and Wang [11] showed that insects hovering kinemat-
ics minimize energy consumption. De Margerie et al. [12] applied
artificial evolution to optimize the morphology and the kinematics of
a flapping-wing birdlike UAV. All of these works except de Margerie
etal.’s used a single-objective approach to solve the problem in spite
of its multiobjective nature. In this work, a multiobjective method to
find and analyze optimal kinematics for an ornithopter in cruise flight
is presented. For the sake of clarity, a simplified framework have
intentionally been chosen. The geometry of the wings (rectangular
rigid wings) is simplified, the flapping motion (harmonic dihedral
motion) is symmetrical and the aerodynamic performances are
evaluated by a semi-empirical flight physics model [13]. The
simplicity of such framework enables a clear and understandable
illustration of the efficiency of the method. The problem at hand
involves multiple objectives and several optimization parameters.
Unlike most of the approaches listed above (except [12]), all of the
pertinent objectives of the problem have been simultaneously taken
into account in this work. The commonly used single-objective
method outputs only one solution, while the multiobjective
procedure produces several solutions, as long as the objectives are
contradictory (which is the case in this work). Thus, the single-
objective approach does not provide the possibility to characterize
solutions optimality by design rules (because it is impossible to infer
rules from one solution), whereas the multiobjective strategy allows
us to infer optimality rules from the cloud of Pareto-optimal solutions
using statistical methods [14]. Thus, the multiobjective point of view
is in two ways advantageous: it allows simultaneously taking into
account all of the relevant objectives of the problem and it provides
the possibility to find optimality rules for the Pareto solutions
increasing by this fact the comprehension of the problem. The group
of optimal solutions is found using a multiobjective evolutionary
algorithm as this class of methods is, to the authors” knowledge, the
best tool to solve multiobjective optimization problems [15] when
the objectives can be evaluated in a reasonably short time, which is
the case in our study, due to the use of a fast and simplified flight
physics model. As stated previously, the multiobjective optimization
procedure outputs a global Pareto set with multiple solutions. Groups
of attractive solutions are defined on the Pareto surface and the most
efficient solutions among them are characterized. Given the high
dimensionality of the global Pareto set in the kinematic parameters
space, it is not easy to explore its structure (see Bellman’s “curse of
dimensionality” [16]). Different techniques of high-dimensional
Pareto surface analysis are commonly used (principal components
analysis [17], multidimensional scaling [17], response surfaces [18],
etc.), butto the authors’ knowledge, none of them can simultaneously
represent high-dimensional data sets accurately and allow us to
visualize them comfortably. It is the goal of this work to propose a
method that handles easily high dimensionality and that can
characterize with accuracy selected subsets of the global Pareto set
with mathematical relations or design rules. Indeed, mathematical
relationships on the optimized parameters (actually low-risk inequal-
ities also called rules) are extracted to describe the most efficient
solutions. Giving rules is more profitable than just handing the value
of the kinematic parameters and the objectives for the most efficient
solutions. Indeed, these rules provide some useful information to the
designers to understand the optimality of the most efficient solutions.
In Sec. II the propulsive efficiency maximization problem is
presented, then in Sec. III models and methods used to solve the
problem are exposed and in Sec. IV the multiobjective optimization
results are presented along with the rules qualifying the most efficient
solutions.

II. Problem Statement

A 1-m-span birdlike model with rectangular rigid wings equipped
with a Liebeck LPT 110 A airfoil [19]is in horizontal cruise flight ata

velocity V, =6 m/s. A simple geometry has intentionally been
chosen to present a method to find and analyze optimal solutions
within a simplified framework. The symmetrical flapping motion can
be decomposed into three basic motions: dihedral motion, sweep
motion, and twist motion, also called pitch (see Fig. 1). In our case,
only the dihedral motion has been considered. It is, of course, a
simplification of the real motion of birds’ wings, but it would have
complicated the analysis to add the twist motion and/or the sweep
motion, which is why, for the sake of clarity, the kinematic has been
restrained to a simple dihedral motion. The dihedral angle ¥ is given
by a Fourier series [20] as follows:

2
¥ =Cy+ ) [C,sin(2anfyt) + BycosQmnfyn)] (1)

n=1

An amplitude and phase can be defined for each harmonic n as
follows:

A,=+CL+B}  ¢,=arctan (%) 2

n

In the literature [2,8-10,12,13,20], most of the studies on flapping
wings use one harmonic or two to describe the kinematics of the
flapping. In our study, one harmonic for the dihedral motion
(C; = B, = 0)has been used, as in [2,12]. The reason for this choice
is that the model of [13], which is based on DeLaurier’s model [2],
requires sinusoidal functions with one harmonic as the input
kinematics. The flapping-wing kinematics are generated by an
engine, which generally works on electricity or fuel and transforms
this energy into mechanical energy. The onboard energy storage
(batteries, fuel, etc.) generates an additional mass to carry and
consequently reduces the payload, as the UAVs’ total mass is limited
for performance reasons. Souied [21] reported that half of an UAV’s
mass is dedicated to the carriage of the necessary energy resources for
flight, which significantly reduces the payload. Thus, the optimi-
zation of the use of onboard energy appears to be an important factor
to improve UAVs performances in terms of payload, energy
consumption, flight time, etc. There are different ways to boost the
energetic efficiency of an UAV: improvement of the efficiency of the
propulsion units, reduction of the drag, energetic efficiency
optimization of the wing kinematics, etc. The energetic efficiency
optimization of the wing kinematics retained our attention in this
work. Recently, many studies [22-24] have investigated the high
propulsive efficiencies encountered in nature (insects, birds, and fish)
in order to discover the principles governing these high perfor-
mances. Others tried to optimize existing designs to maximize the
propulsive efficiency of UAVs in flight [8-10,12,24,25]. But none of
these studies has sought to characterize the optimal solutions with
design rules. Itis the goal of this work to present a method to find and
characterize with design rules the most efficient kinematics that
maximize the propulsive efficiency in horizontal cruise flight for a
given velocity.

III. Models and Methods
A. Flight Physics Model

The model of [13], presented in the Appendix, is an adaptation for
large incidence angles of DeLaurier’s model [2]. It has been
successfully used to predict the lift and thrust of a rectangular wing
(1 m span) in pitch and plunge at a Reynolds number of 7 x 10 and a
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Fig. 1 Flapping motion can be decomposed into three basic motions:
sweep, dihedral, and twist.
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reduced frequency of 0.4 [13]. Figure 4 of [13] compares the model
prediction and the experimental values of lift and thrust. One can
easily see on this figure that the model of [13] is in excellent
agreement with the experience. Furthermore, DeLaurier’s model [2]
has also been successfully compared to experimental wind-tunnel
measurements at a Reynolds number of 2 x 105, as it is shown in
Fig. 11 on page 160 of [26]. This figure shows that the model
predictions are close to the loads measurements (lift and thrust
coefficients) made on a real omithopter wing. Given the geometry
and forward velocity of our birdlike vehicle, it evolves at a Reynolds
number of about 6 x 10%, and according to maximum and minimum
frequencies on the Pareto surface (see Table 1), itis characterized by a
reduced frequency that varies between 0.34 and 0.78. It appears then
that the model of [13] is suitable for our application, as it has been
validated against experimental data for a Reynolds number and a
reduced frequency close to those of our study. Nevertheless, as we
stressed out in Sec. II, the model requires the use of sinusoidal
functions with one harmonic as input kinematics. This limitation
remains acceptable for our purpose, as we are not in need of more
than one harmonic to expose our method, the goal of which is to find
and analyze cruise optimal kinematics for a birdlike vehicle.

B. Optimization: Concepts and Tools
1. Terminology

When dealing with an optimization problem, specific vocabulary
is used. On its most general form a multiobjective optimization
problem reads as follows:

maximize f,,(x), m=1,...,p, withg;>0
I I h; =0, Jj=1....L
fox,-Sx"-‘, i=1,....q 3

where p is the number of objectives, K the number of inequality
constraints (represented by the functions g;) and L the number of
equality constraints (represented by the functions k;). The vector
x=(xy,...,%,) is the g-dimensional decision vector. The g
numbers x} and x¥ are, respectively, the lower and upper bounds for
the variable x;. These bounds define the search space or decision
space, D. The image of the decision space by the objectives is called
objectives space. A solution is an element of the decision space and
its image lies in the objectives space. A solution that satisfies the
constraints is feasible and the group of feasible solutions is called
feasible space S.

2. Dominance and Pareto-Optimality

A solution x' of the problem (3) is said to dominate another
solution x/, if the following conditions are satisfied:

1) The solution x’ is not worse than x/ with respect to all objectives,
which means that f,,(x") > f,,(x)¥ me {l,...,ph

2) The solution x* is strictly better than x/ with respect to at least
one objective, which means that I3 me {1,..., p} such that
Fa(®) > fu(¥).

The global Pareto set of the multiobjective optimization problem
(3) is composed of the feasible solutions that are not dominated by
any other solution of the feasible space. The image of the Pareto setin
the objectives space is called Pareto surface or Pareto front for a
biobjective problem (Fig. 2).

f,
A o Search space

] /_

o O Dominated solutions
e)
(@]
7 ®h
Pareto Front
Non-dominated

solutions
Fig. 2 Pareto front: dominated and nondominated solutions.

3. Search Procedures of the Nondominated Set

Most optimization problems involve numerous objectives in
practice. A simple approach consists of transforming them into a
single objective by using a weighted sum of the relevant objectives as
follows:

P
Fu®) =) wafu) (©)
m=1

where the weights w,, > 0 verify

Zwmzl

m=1

Then to solve problem (3), the following optimization program is
considered:

maxF w (%) (5)

The solution of problem (3) is included in the Pareto surface. It is
given by the tangency points between the Pareto surface and the
hyperplane for which the normal is the vector w = (wy, ..., w,).
Then by changing the weights we can get the whole front if it is
convex [27]. If the Pareto surface is a hyperplane in the objectives
space, then the two approaches are equivalent and one will prefer the
single-criterion approach forits simplicity. But if the Pareto surface is
concave or changes curvature, then this single-criterion method will
be unable to get all the points on the Pareto surface by just changing
the weights [27]. On the contrary, multiobjective optimization
procedures produce a set of tradeoffs, among which a higher-level
algorithm, or the user, may select the favorite one without the need to
assign a priori weights to these alternatives. One of the most
interesting properties of evolutionary optimization methods is their
ability to deal with multiple objectives at once. Numerous algorithms
have been proposed [15] to generate the set of such compromises.
Most of them rely on the concept of Pareto dominance and generate
the so-called Pareto surface. In this work, the e-MOEA algorithm
[28] has been used for its efficiency and robustness to generate
globally Pareto-optimal sets. It is based on the e-dominance concept,
where € is the discretization resolution of the Pareto surface.

Table 1 Statistical description of the Pareto surface and global Pareto set

7l DC. Cn A & fo C

Min 0.018 -—0.38 0.02 2475 —1.1361 4.43 —38.28
Max 0.17 312 0.49 56.57 1.4083 10 18.5

Mean 0.11 0.67 0.16 49.51 —0.18 7.54 —13.57
Std dev 0.04 0.72 0.11 4.99 0.8 1.36 14.41
First quartile 0.096 0.12 0.07 46.865 —0.8 6.55 —24.81
Second quartile 0.12 0.49 0.14 50.72 —0.7 7.66 —14.65
Third quartile 0.14 1.06 0.24 5273 0.8 8.59 -3.77
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4. Optimization Program

Some relevant variables for our problem need to be stated. In
horizontal symmetrical flapping flight with prescribed forward
velocity, the following equalities hold:

DC,=0 (6
CT - Cd (7)
C,=0 @®)

where DC, is defined in Eq. (10) and C,, is the moment coefficient.
The optimal solutions should satisfy these equations. Following
empirical relations established for birds [29], an average total mass M
(0.69 kg) and an average wing surface area S (0.15 m®) are
computed. Then the necessary lift coefficient C,, to support the
weight is computed as follows:

2Mg
= 9
zc pS‘lg ( )
where V, is the cruise velocity, £=9.81m-s 2 and p=

1.295 kg - m~>. For V., =6 m/s, we have C.. = 1.97. Using the
empirical relations provided by [29], maximum and minimum values
for the mass (M., =5.0 kg and M;, =0.1 kg) and the cruise
velocity (V. =30 m/sandV, . = 6 m/s)forabirdlike vehicle of
1 m span are estimated. Then using Eq. (9), maximum (C, = 14.3)
and minimum (C, = 0.01) values for the mean lift coefficient are
computed. The value of C. _ is unexpectedly high in comparison
with the commonly encountered values of aerodynamic lift
coefficient. But we will show that the lift coefficient obtained in our
simulations takes realistic values and that the upper and lower bounds
(C.,, and C. ) we used for the lift coefficient are never reached on
the obtained Pareto surface. With an estimation for birds of the mean
body drag C;, [29] (here C;, = 0.37) maximum (C,_ = 0.06) and
minimum (C, = 0.0043) values for the drag coefficient are
computed via the relation C; = 0.00813M%(Cdb /S). Equation (7),
allows to derive upper and lower bounds for the mean thrust
coefficient Cr as well [see Eq. (11)]. A reference thrust coefficient
could have been computed rather than deriving upper and lower
bounds for the thrust coefficient, but as the thrust coefficient is related
to the drag coefficient of the body and the appendices through Eq. (7),
this would have made our results dependent on the drag model and
the shape of the body and the appendices. That is why we chose to
impose upper and lower bounds on the thrust coefficient to avoid the
use of a drag model to predict the drag on the body and to guarantee
that our results are independent of the body shape. The use of Eq. (7)
to derive these upper and lower bounds for the thrust coefficient
means that Eq. (7) is supposed to hold and that at each predicted
thrust value corresponds a drag value related to a family of body
shapes. Furthermore, DC, and DC? are defined by

DC=C=C,,  DCI=2C )
The constraints can be summarized as follows:
Cdmjn 5 CT E Cdmax (11)
C.ZC=2C_, (12)
M — M _ My — M
DC! < 13
M -t M 3

DC? is the difference between the load that can be taken by the aerial
vehicle and M (0.69 kg) divided by M. As the maximal mass is of 5 kg
and the minimal mass is of 0.1 kg, only the solutions with a DC}
inferior to DC}, = My, —M)/M (6.5) and superior to
DC: i = (M, — M)/M (—0.85) are feasible. As we seek to

maximize the propulsive efficiency 7 while satisfying Eqs. (6-8), itis
clear that we have to simultaneously maximize the propulsive
efficiency 7, minimize DC., and minimize C,,, whereas Eq. (7) is
supposed to be automatically satisfied. The two constraints (11) and
(12) are enforced during the optimization loop, and Eq. (13) is
enforced at the end of the optimization process. The optimization
variables are the kinematic parameters of the dihedral motion given
in Eq. (1). These quantities vary in the following ranges:

Cy € [-40°,40°], C; € [-40°,40°),

fy €[0 Hz, 10 Hz]

B, € [-40°, 40°]

The objectives are scaled with an asymmetrical function, defined as

follows:
P {Hﬂ% if x>0,

] e
=y otherwise

This function is used to favor finding positive values of x, which
means in our case finding propulsive efficiencies 7 as close to 1.0 as
possible, lift coefficients (C,) slightly superior to the targeted lift
coefficient C_. and moment coefficients C,, slightly superior to zero.
A penalty IT has been added to each criterion to discard uninteresting
solutions (negative propulsive efficiency or negative power) and
reject those that do not satisfy Eqs. (11) and (12). The penalty
function is based on the Heaviside function H defined by

1 ifx>0,
0 otherwise

H(x) = {

The penalty function is defined as follows:
M = —H(ji — 1) = H(~7) — H(C; — Cy, ) = H(Cy,, — C7)
-H(C.-C,,) —H(C,, —C)—H(-Py)

The constraint (13) on DC; has not been included in the penalty
function but it is taken into account at the end of the optimization
process by deleting the solutions that do not respect it to obtain the
final global Pareto set. This constraint on the mass has not been
enforced during the optimization process to obtain a greater diversity
of solutions. The scaled optimization program reads as follows:

F,=T(@i—1)+2I-2,
Maximize { F, =I'(C,—C,.) +2I1 -2,
F,=T(C,) +2I1-2

The same penalty is applied to all the objectives to guarantee that
solutions with no penalty (called nonpenalized solutions) dominate
the solutions with a nonzero penalty (called penalized solutions).

5. Optimization Code

An open-source software framework, SFERES' (Software
Framework Enabling Research on Evolution and Simulation)
written in C++ and developed by Landau et al. [30] is used for the
optimization step. A module providing the value of (F;, F;, F3)
using the [13] model is coupled with this software.

C. Data-Mining Methods: Principles and Terminology

The postprocessing of the obtained global Pareto set is performed
with data-mining techniques using Clementine software.”” Data
mining is an activity for which the goal is to discover hidden or
a priori unknown facts contained in databases. Using a combination
of machine learning, statistical analysis, modeling techniques and
database technology, data mining finds patterns and subtle

9Data available online at http://sferes.lip6.f1/ [retrieved 18 June 2010].

**Data available online at http://www.spss.com/software/modeling/
modeler-pro [retrieved 18 June 2010]. Clementine SPSS has changed to
IBM SPSS Modeler Professional since IBM bought SPSS.
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Fig. 3 Scatter-plot matrix representation of the objectives for the obtained Pareto surface: a) DC, versus i, b) C,, versus i, and ¢) C,, versus DC,.

relationships in data and infers rules that allow the prediction of
future results.

1. Segmentation with Decision Trees

Decision trees [31] belong to the supervised data-mining tools that
process segmentation (i.e., division into segments). The purpose of
segmentation is to identify homogeneous subgroups inside a given
population regarding a target variable that is to be explained versus
predictor variables defined by the user. In the case of segmentation
(that we have considered in our study), the target variable identifies a
category; it describes belonging to a given group for which the
characteristics are specified by the user: for example, the class of
solutions for which the propulsive efficiency is superior (or inferior)
to a given threshold. In this work, the segmentation have been
performed by decision trees for which the operating principles are
detailed throughout the presentation of binary decision trees (with
only two classes) in the next paragraph (the extension to multiple
classes is straightforward). A binary decision tree is composed of
various subgroups (called nodes) from the initial population (called
root node). These nodes are generated by identifying among the
predictor variables the most discriminating one regarding the
homogeneity of the resulting nodes. Each node is associated with a
predictive value of the target variable; for segmentation it is usually
the class. This predictive value is computed with a certain risk
estimate that corresponds to the percentage of misclassified solutions
ineach node: i.e., the percentage of solutions that do not belong to the
predicted class of the node. A tree can then be built by splitting the
root node into nodes in a recursive manner. Each step splits a node
into two nodes (binary decision trees), based on the most
discriminating predictor variable var such that the left resulting node
is characterized by the inequality var < r and the right one by
var > t (1 being a threshold). This process stops when the splitting is

either unfeasible or a singular segmentation can be applied to each
element of the derived node. The terminal nodes are called leaves.
The path from the root node to each leaf defines a succession of
inequalities on the predictor variables that characterize the solutions
belonging to the leaf with a certain risk depending on the percentage
of misclassified solutions in the leaf. One single path is associated
with a succession of inequalities called a rule. By choosing the leaves
that predict the membership to the class of interest, one is able to
characterize this class with a set of rules at a certain risk.

2. Kohonen Networks

Kohonen networks belong to the unsupervised data-mining tools
and are based on neural networks [32,33]. No target variable is
defined, but depending on the given set of predictor variables, the
objective of the method is to build clusters inside a given population
such that each group has to be homogeneous regarding unknown
relations that have to be discovered. The objective of a Kohonen
network is to form a discrete, topological mapping of an input space
of arbitrary dimension Q, x; being the ith input vector. Close input
vectors should be close in the map (topology preservation). A
Kohonen map is composed of output units often arranged in a 2-D
rectangular or hexagonal grid, z; being the 2-D coordinate vector of
the ith output unit on the map. These units are also defined by Q-
dimensional weight vectors, also called code books, with A ; being the
QO-dimensional weight vector of unit i{. The output units are
connected to each other by a neighborhood relation based on a
neighborhood function u(z;,z;) that takes as arguments the
coordinates of the output units on the map. The learning process is as
follows:

1) Initialize the weights for each output unit to small random
numbers.

2) Loop until weights changes are negligible.
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Fig. 4 Scatter-plot matrix representation of the parameters for the obtained global Pareto set: a) frequency versus amplitude, b) phase versus

amplitude, and c) phase versus frequency.

3) For each input vector x;,
a) Feed the input vector to the output units.
b) Find the winning output unit /*.
c) Find all units in the neighborhood of the winner.
d) Update the weight vectors for these units.

4) Reduce the size of the neighborhoods if required.

The winning output unit is simply the unit with the weight vector
that has the smallest distance (usually Euclidian) to the input vector.
The neighborhood of a unit is composed of the units within some
distance to that unit on the map (the distance is computed with the
neighborhood function, given the coordinates of the units on the map
[32,33]). For example, if the size of the neighborhood is one, then all
units no more than one unit away (either horizontally or vertically)
fall within its neighborhood. The weights of every unit in the
neighborhood of the winning unit (including the winning unit itself)
are updated using

A=A+ pulz;, z0)(x; — X))

where g is a control parameter of the method, called the learning rate.
This will move each unit in the neighborhood closer to the input
vector. As time progresses the leamning rate and the neighborhood
size are reduced. If the parameters are well chosen the final network
should capture the intrinsic characteristics of the input data. The built
map is a low-dimensional representation of the -dimensional input
space. It can be used for visualization or to extract some interesting
properties of the input space. One can group the output units that are
similar to distinguish groups or patterns in the data. This grouping
procedure is called clustering.

3. Postprocessing Steps

Decision trees and Kohonen maps have been combined to analyze
the global Pareto set obtained at the end of the optimization loop.
Groups of attractive solutions are defined by mathematical relation-
ships in order to select subsets from the Pareto surface. The goal is to
discover the mathematical relationships on kinematic parameters
(global Pareto set) to qualify the most efficient solutions of these
subsets. Therefore, the following strategy is used:

1) Define groups of attractive solutions.

2) Characterize the subset of interest with respect to the entire
global Pareto set using a binary decision tree: The target variable is
the membership to the subset and the output is the decision-tree rules,
called rule,.

3) Study the inner structure of each subset with Kohonen maps: the
output is a certain number of clusters.

4) Select the cluster with the highest proportion of efficient
solutions.

5) Run the decision tree on the subset: the target variable is the
membership to the selected cluster and the output is the decision-tree
rules, called rule;.

6) Describe the most efficient solutions of the subset by taking the
intersection of rule, and rule;.

IV. Results and Discussion
A. General Considerations
Evolutionary algorithms are stochastic optimization algorithms.
Their output may then vary, even when restarted with the same
parameters. To tackle this problem, eight identical runs are launched
and the eight Pareto surfaces are aggregated. Then the final Pareto
surface is obtained after a Pareto nondomination sort on the
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Fig. 5 Scatter-plot matrix representation of the parameters for the obtained global Pareto set: a) C;, versus amplitude, b) frequency versus amplitude,

and c) frequency versus C.

aggregated set (Sec. I11.B.2). For each run, the optimization loop is
stopped when no visual change on the output is detected within a
period of at least 10 generations or when the maximum number of
generations is reached (5000).

Space integrals have been computed with the Simpson formula
[34] using 1024 points and classical averaging have been employed
to compute time averages with 100 points (the number of points in
space have been determined so that the change in value of the flight
physics model’s output was less than 0.0001 by doubling the number
of points). A value of 0.025 is used for C,,  and a common forward
speed (V. = 6 m/s) for birds in slow flight with a 1 m wing span
[12,29] is considered.

B. Global Pareto Set and Pareto Surface

First of all, it appears that DC? = DC_/C,. (C.. = 1.97) takes
values that are between DC; ~6.5 and DC} ; ~ —0.85. The
maximal value of DC? (1.63) is inferior to DC?  and the minimal
value of DC? (—0.2) is superiorto DC?_ , thus all the Pareto-optimal
solutions obey to Eq. (13). By rewriting Eq. (10) as follows,

C.=C,(1+DC?)

upper (5.2) and lower (1.5) bounds for the lift coefficient on the
Pareto surface are computed. It appears that these bounds are in the
interval [C, _, C, ] and are distinct from C, _ and C,__: thus, all
Pareto-optimal solutions are characterized by realistic lift
coefficients. Furthermore, some Pareto-optimal solutions have very
low propulsive efficiencies, as can be seen in Table 1. There are two
main reasons to explain that: the tendency of propulsive efficiencies
to be low for slow cruise velocities and the underestimation of
propulsive efficiencies for slow cruise velocities by the [13]

simplified flight physics model. Indeed, the variation of the flight
power versus the velocity is U-shaped [29], which means that the
flight power takes high values for low as well as high velocities. As
the propulsive power increases with the velocity, the propulsive
efficiency is low for low and high speeds and peaks for an
intermediate speed. In our case, the cruise velocity is low, so it is
normal to get low propulsive efficiencies. Nevertheless, as the flight
physics model of [13] is simplified, it does not take into account low
Reynolds number phenomena that affect the performances at slow
cruise speed such as laminar-turbulent transition, laminar separation
bubbles, and wake capture [35-37]. This may explain why the
predicted propulsive efficiencies are very low in our case, but as there
are no reliable measurements of the propulsive efficiency for real
birds [38], it is difficult to compare the propulsive efficiencies we
obtained to real ones in the case of slow cruise flight. As our objective
is to present a method to find and analyze maximum cruise-flight
propulsive efficiency kinematics for a flapping-wing vehicle using a
multiobjective approach and data-mining tools, the low values of the
propulsive efficiency are not a problem, since they do not affect the
methodology. In the following, the optimization parameters
(Co. C1, By, f,) will be replaced by the equivalent set of parameters
(Cy, Ay, ¢y, fy). Actually, the amplitude of the dihedral motion A,,
computed in degrees, and the phase ¢,, computed in radians [see
Eq. (2)], are more meaningful than C, or B,. For the sake of clarity
and simplicity, the expressions optimization, optimized, and optimal
parameters will refer to (Cy, A, ¢;. f,,), given that the two sets of
parameters are strictly equivalent from the optimization point of view
because of Eq. (2).

Some statistical indicators are computed on the Pareto surface and
the global Pareto set to get an idea of the distribution of the values of
objectives and optimal parameters. These values can be found in
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Fig. 6 |DC,| versus C, for the set obtained at V, = 6 m/s.

Table 1. For each objective (77, DC,, C,,) and kinematic parameter
(Co. Ay, 1. [y), four different groups of values have been defined.
The values inferior to the first quartile are qualified by very low
values, those between the firstand the second quartiles are designated
by low values, those between the second and the third quartiles are
called high values and those superior to the third quartile are
identified by very high values. Using the scatter-plot matrix method
[39] (see Fig. 3) on the Pareto surface, it comes that high propulsive
efficiency values are associated with high C,, values (see Fig. 3b) and
high DC, values (see Fig. 3a).

One can also find the same representation for the corresponding
optimal parameters (see Figs. 4 and 5). Nevertheless, as these high
propulsive efficiency solutions are associated with high C,, values
and high DC, values they do not satisfy the cruise-flight Egs. (6-8). If
the high DC,; values are acceptable, as they mean that the predicted
lift is greater than the needed lift, the high C,, values are unac-
ceptable, because they do not guarantee {light stability. This poses the
question of the choice of the selection criteria to adopt for assessing
Pareto-optimal solutions attractiveness. Within this work, we define
groups of solutions according to the values taken by the objectives
and study their specific characteristics in terms of rules on the
kinematic parameters (global Pareto set) using data-mining methods
such as decision trees and Kohonen maps.

C. Data-Mining Approach

Our goal is to find the Pareto-optimal solutions that maximize
and satisfy the constraints (6-8). InFig. 6, the projection of the Pareto

surface on the plane (|DC,|,C,,) allows us to distinguish four
different sets as follows:

1) Set 1 is the set of solutions that simultaneously minimize | DC,|
and C,,,.

2) Set 2 is the set of solutions that minimize only C,,.

3) Set 3 is the set of solutions that minimize only |DC_|.

4) Set 4 is the remaining solutions.

Set 1 corresponds to the solutions that fulfill the three constraints
(6-8), set 2 refers to the solutions that meet only a couple of
constraints (8) and (7), and set 3 consists of the solutions that satisfy
only the couple of constraints (6) and (7).

Therefore, the sets 2 and 3 partially fulfill the constraints (6-8).
Set 3 includes solutions that can have high C,, values, as it does not
satisfy the constraint on the moment coefficient, which is
unacceptable from the flight stability point of view. Set 2 includes
low C,, solutions (ensures flight stability) that have positive DC,
(possibility to take additional payload), which makes it interesting to
consider. Now the three sets can be ordered in order of importance:
set 1 is the most interesting because it fulfills Egs. (6-8); then comes
set 2, because it contains stable solutions that can take additional
payload; finally, set 3, which does not contain potentially interesting
solutions. In the following, the characteristics of the sets 1 and 2 are
studied. Each set can be defined more precisely with mathematical
inequalities as follows:

(Cm - min(cm)} i Cm (15)

Set 1 is defined by the two inequalities (14) and (15), and set 2 is
defined by the inequality (15). The idea behind the inequalities (14)
and (15) is to select a neighborhood, if it does exist, of the point that
conjointly minimizes |DC.| and C,,. One can easily understand that
for set 2, the idea is to select a neighborhood of the point that
minimizes only C,,. C,./10 has been chosen as amplitude variation
in the |DC,| direction, because C,, is the reference lift coefficient of
our problem and C,. /10 is a small lift coefficient variation compared
to C,. In the C,, direction, C,, has been chosen as amplitude
variation, because C,,_ is the reference moment coefficient of our
problem and is small enough compared to the mean C,, value (see
Table 1) on the Pareto surface. To get an idea of the distribution of the
values of the objectives and the kinematic parameters for the sets 1
and 2, we computed some statistical indicators (see, respectively,
Tables 2 and 3). Itis worth noting that all the data-mining techniques
used in this paper produce stable and reliable results in the sense that
one is able to get reproducible results with Clementine software.

Table 2 Statistical description of set 1 in the objectives and parameters space

7 DC, Cn A é1 fy Co
Min 0.018 -0.19 0.021 24.75 —1.14 47 =393
Max 0.08 0.19 0.045 5497 1.41 9.13 13.17
Mean 0.04 —-0.07 0.0295 42.53 0.16 6.08 6.75
Std dev 0.015 0.08 0.0052 8.89 0.81 1.116 3.96
First quartile 0.03 —0.14 0.026 34.83 —0.74 521 5.74
Second quartile 0.04 -0.07 0.028 43.156 0.38 5.76 6.83
Third quartile 0.05 —0.01 0.031 51.41 0.8 6.69 9.16

Table 3 Statistical description of set 2 in the objectives and parameters space

1 DC, Cn A é1 fo Co
Min 0.018 —0.38 0.02 24.75 -1.14 443 =593
Max 0.09 0.34 0.045 55.05 1.41 9.13 185
Mean 0.04 -0.12 0.028 43.73 0.25 579 8.57
Std dev 0.016 0.12 0.0055 7.90 0.78 1.03 432
First quartile 0.028 —0.21 0.024 39.32 -0.71 5.07 6.31
Second quartile 0.036 —0.135 0.0266 45.285 0.55 5.44 9.02

Third quartile 0.048 —0.04

0.0295 50.92 087 610 11.96
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1. Analysis of Set 1

The solutions that belongs to set 1 have very low C,, values and
low to very low DC, values. Rules on the kinematic parameters are
found to characterize the solutions of set 1, called the gold group,
versus the other solutions of Pareto surface, called the else group.

a. Characterization of Set 1 Versus the Global Pareto Set by
Decision Trees. A decision-tree algorithm is ran to find rules on the
optimization parameters (Cy,A;, ¢, fy) (called the predictor
variables), to explain the belonging to set 1 or gold group. Indeed, the
purpose of the decision tree is to divide into segments the whole
population of solutions into homogeneous subgroups where the
standard deviation of the target variable is minimum. Here, the target
variable is categorical. It describes the membership to set 1: solutions
that simultaneously minimize |DC,| and C,, or not (for more detail
on the decision tree, see, for example, [31]). Because the target
variable is binomial, the minimization of the standard deviation
consists of maximizing the percent of solutions that belong to one of
the two classes (gold or else) in a given node. The processed tree is
shown in detail in (Fig. 7). It is worth noting that given that set 1
contains only one-tenth of the whole Pareto set, the modeling
techniques based on decision trees (as almost all of the data modeling
techniques), would have trouble with such biased data, because it will
tend to learn only the group composed by 90% of the solutions thatdo
not belong to set 1, since it is more rare. If the data are well-balanced
with approximately equal numbers of solutions in each group, the
decision tree will have a better chance to find patterns that distinguish
the two groups. It is the reason why we processed a rebalancing
operation on the data of set 1 by overweighting the corresponding
solutions for more accurate and significant results. The precision of
the tree is assessed by a contingency table that gives the risk estimate
of the tree (3.56%). Risks tell the chances of misclassification at any
level in a decision tree. For categorical predictions as in our study, the
risk is the proportion of cases incorrectly classified. So if the risk
estimate is equal to 3.56, it means that 96.44% of the data are
correctly classified by the segmentation model computed by the
decision tree. Here, for a binomial modeling prediction, the risk
describes the proportion of cases incorrectly classified by the tree.
Therefore, the quality level of the decision tree is very high and its
reading is as follows. The highest group in the decision tree (see
Fig. 7), called the root node, corresponds to the whole population that
is to be segmented. One can note that the two classes of solutions

Root

% n
49.98 12837
50.02 12847

Node 2
Co> -4

Cp<-4.11
% n

Else 988 10706 Else

Gold 1.2 126 Gold

eachrepresent 50% of the whole database, given that we proceeded to
a rebalancing operation, as we explained before. Then a first split
appears due to the identification by the decision-tree algorithm that
the variable C, with a threshold of —4.11 is the most discriminating
one. That is to say that any another predictor variable will produce a
worse segmentation in terms of homogeneity. The result due to this
first level of segmentation is that the two corresponding nodes that
appear at the second level of the tree (see Fig. 7) are more homo-
geneous: 98.8% of the solutions of the node 1 are in the else group
and 85.7% of the solutions of the node 2 are in the gold group. This
result corresponds to a significant improvement of the degree of
homogeneity regarding the root node constituted by 50% of gold
solutions against 50% of else solutions. Moreover, if we explore the
tree we find two very homogeneous nodes (nodes 4 and 7, see Fig. 7)
regarding the gold group (around 95% of the solutions in each node
correspond to set 1), for which the two exclusive rules are given as
follows:
1) Rule 1:

—4.11=Cy =232 and f, =567 (16)

2) Rule 2:
232=Cy =13.05 a7

One can note that these rules are given in terms of Cy and f,, with G
being the most discriminating variable.

b.  Characterization of the Inner Structure of Set 1 by Kohonen
Maps. Once set 1 has been characterized by comparison to the rest
of the global Pareto set, we analyze its inner structure by using a
typology method based on self-organizing Kohonen networks
[32,33] to discover the role played, if any, by the predictor variables
(kinematic parameters) in the composition of the set. The predictor

~ variables that have been taken into account to build theses clusters are

(Co. A1 1, fyy). The use of this data-mining technology available in
Clementine software yielded eight clusters, within which each
member is distinguished by its belonging to one of the four pro-
pulsive efficiency’s quartiles formed on set 1. This mode of quali-
fication allows us to identify a posteriori homogeneous groups
characterizing the highest level of the propulsive efficiency 7. We
select the cluster, called cluster 1, that contains a high proportion of
solutions for which the values of 1 are superior to the second and the

n
2131
12721

Node 3 Node 6
Cgs232 Co> 232
% n
505 Else 79 996
49.5 Gold 92.1 11607
1 1 1 1
Node 4 Node 5§ Node 7 Node &
Frequency < 5,67 Frequency > 6.67 Cogs13 Co>13
% n % n % n % n
Else 4.9 58 Else 99.3 1077 Else 57 707 Else 948 289
Gold 951 1106 Gold 0.7 8 Gold 94.3 11591 Gold 52 16

Fig. 7 Decision tree and the rules characterizing set 1 by comparison to the whole global Pareto set.
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third quartile computed on set 1; this corresponds to the most efficient
solutions of set 1 and is of particular interest to our study. Further-
more, the identification of the discriminant rules that characterize
each one of the eight clusters is obtained by processing a decision tree
for which the target variable is the cluster’s belonging. The resulting
decision tree processed under Clementine reveals with high accuracy
the belonging of each solution to a given cluster by finding rules on
the kinematic parameters. It appears that cluster 1 is qualified by two
inequalities produced by the decision-tree algorithm as follows:
3) Rule 3:

A, 24340 and ¢, < —0.61 (18)

2. Interpretation

The comparison of the thresholds on f, found in rule (16) and the
statistical indicators computed for the whole global Pareto set (see
Table 1), shows that the frequency is inferior to the first quartile of the
frequency values for the global Pareto set, which means that £, takes
very low values. On the other hand, one can see that in Eq. (16) C,
takes high values and in Eq. (17) it takes very high values. Thus, we
can say that to belong to set 1, which is equivalent to fulfilling
Egs. (6-8), either Eq. (16) or Eq. (17) has to be satisfied: either the
upper-bounded mean dihedral angle takes high values and the
frequency takes very low values or the mean dihedral angle takes
very high values. One could think that rule (16) characterizes
completely the highly efficient solutions of set 1. Actually, this rule
tells us why this group of solutions is different from the other
solutions in the global Pareto set in terms of predictor variables
(Co, Ay, &1, fy), but it does not characterize the most efficient
solutions of set 1. In this study, as we are interested in discovering the
rules that qualify the most efficient solutions that fulfill Egs. (6-8),
we have performed a second step to characterize the most efficient
solutions of set 1 by Kohonen maps and decision trees, which led to
the characterization of cluster 1 by rule (18). If we compare the
thresholds obtained in rule (18), which characterizes the most
efficient solutions of set 1 (solutions of cluster 1), to the statistical
indicators computed on the global Pareto set (see Table 1), we can see
that the solutions of cluster 1 are characterized by negative low values
to very low values of phase ¢, and high values to very high values of
amplitude A,. Therefore, the most efficient solutions of set 1
(solutions of cluster 1) are characterized by two sets of rules. As they
belong to set 1, they are qualified by rules (16) or (17) obtained by the
decision tree, and as they are the most efficient solutions of set 1, they
are also described by rule (18). We can then say that the most efficient
solutions that fulfill Eqs. (6-8) are associated with high values to very
high values of amplitude A; and to negative low values to very low
values of phase ¢, [see rule (18)] and either positive very high values
of mean dihedral angle Cy [Eq. (17)] or high values of mean dihedral
angle C, and very low values of frequency f,, [Eq. (16)]. These rules
are summarized in Table 4 in the column corresponding to set 1.

3. Analysis of Set 2

‘We recall here that the solutions that belong to set 2 have very low
C,, values. As noted previously (see Sec. IV.C.1), we found rules to
characterize set 2 by comparison to the rest of the solutions in the
global Pareto set. The solutions of set 2 are called the gold group, and
the other solutions in the database constitute the else group.

a. Characterization of Set 2 Versus the Global Pareto Set by
Decision Trees. One more time, a rebalanced decision tree is
processed and the precision of the tree is assessed by a contingency
table that gives the risk estimate, which is equal to 1.33%. Set 2 (see
Fig. 8) is characterized by two rules:

1) Rule 1:

Cy <232 and f, <558 (19)

2) Rule 2:
Cy =232 (20)

Table 4 Summary of the rules for set 1 and set 2

Set 1 Set2

Qualification

Rule 1 —4.112C; £232, C,<232,f, <558

fy =5.67

Rule 2 232 <Cy, <13.05 Co=2.32
Most efficient solutions

Rule 3 A, = 43.40, Ay = 4407,

¢, = —0.61 ¢ =045

One can note that these two rules are quite similar to those rules (16)
and (17) found for set 1. Rule (16) is almost identical to rule (19),
except for the frequency threshold, and rule (17) is quite similar to
rule (20), except that there is no upper limit for rule (20), which shows
that the inequality on |DC,| that characterizes set 1 introduces an
upper limit on the mean dihedral angle C. Indeed, we note that the
dihedral angles between 13.05 and 18.5° have not been selected in
set 1 (see Table 2), which shows that there is an influence of the mean
dihedral angle on |DC,|.

b. Characterization of the Inner Structure of Set 2 by Kohonen
Maps. As previously noted (see Sec. IV.C.1), the inner structure of
set 2 is analyzed with a typology method based on self-organizing
Kohonen maps to qualify the most efficient solutions of set 2. Among
the eight clusters produced by the algorithm, cluster 2 has been
selected as it contains a high proportion of solutions for which the
propulsive efficiencies are superior to the second and the third
quartile; cluster 2 corresponds to the most efficient solutions of set 2
and is of particular interest to our study. By using a decision tree, the
membership of each solution to a given cluster is explained by
finding the rules on the predictor variables with a risk estimate of
0.45%. It appears that cluster 2 is characterized by the two following
inequalities:

3) Rule 3:

A; 24407 and ¢; <0.45 (21)

If Egs. (21) and (18) are compared, it appears that the two rules are
quite similar. Indeed, at each time, the amplitude A, and the phase ¢,
are involved and the threshold obtained on the amplitude A, is quite
the same in the two cases, but for the phase, even if the value of the
threshold is different, the nature of the inequality remains the same (it
is a smaller or equal inequality).

4. Interpretation
The comparison of the thresholds on f, found in rule (19) to the
statistical indicators computed for the whole global Pareto set (see

Root
% n

Else  49.95 12010
Gold 50.05 12034

| 1 |
Node 1 Node 2
C,£2.32 C,>232
% n % n
Else 939 11841 Else 15 169
Gold 6.1 767 Gold 985 11267
Node 3 Node 4
Frequency < 5.58 Frequency > 5.68
% n % n

Else 13.9 120 Eise 99.7 11721

Gold 86.1 739 Gold 03 28
Fig. 8 Decision tree and the rules characterizing set 2 by comparison to
the whole global Pareto set.
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Table 1), shows that the frequency values of these solutions are
inferior to the first quartile of the frequency values for the global
Pareto set, which means that the solutions satisfying rule (19) are
characterized by very low frequency values. C; takes high values in
the case of rule (19) and very high values in the case of rule (20).
Rules (19) and (20) show that to belong to set 2, either the
frequency f, has to be very low and the mean dihedral angle C,
takes high values, or the mean dihedral angle just takes very high
values. If we confront the thresholds obtained in rule (21) to the
statistical indicators computed on the global Pareto set (see
Table 1), we can see that the solutions of cluster 2 are characterized
by low values to very low values of phase ¢; and high values to
very high values of amplitude A,. The most efficient solutions of
set 2 are characterized by two sets of rules. As they belong to set 2
they are qualified by the rules (19) or (20) obtained by the decision
tree, and as they are the most efficient solutions of set 2 they are
also described by rule (21). We can then say that the most efficient
solutions that fulfill Eqs. (7) and (8) are associated with high values
to very high values of amplitude A; and low values to very low
values of phase ¢; [see rule (21)] and either positive very high
values of mean dihedral angle C,, [Eq. (20)] or high values of mean
dihedral angle C; and very low values of frequency f [Eg. (19)].
These rules are summarized in Table 4 in the column corresponding
to set 2.

V. Conclusions

In conclusion, we have performed a constrained multiobjective
optimization to find kinematics maximizing the propulsive
efficiency for a simplified birdlike aerial vehicle in horizontal
motion at slow cruise speed (6 m/s). The model in [13] has been
used to describe the physics of the flapping-wing flight and
evolutionary algorithms have been employed to perform the
multiobjective constrained optimization. The study of the obtained
global Pareto set showed that we can distinguish two groups of
interest: the group of solutions that obey cruise-flight constraints
(set 1) and the group of solutions that are stabilized in the moment
(set 2). Using data-mining techniques embedded in the commercial
software Clementine of SPSS, Inc. (decision trees and Kohonen
maps), we identified the rules that characterize the most efficient
solutions from the two sets. On one hand, it appeared that the most
efficient solutions of set 1 are characterized by high values to very
high values of amplitude A; and negative low values to very low
values of phase ¢, [see rule ] and either positive very high values of
mean dihedral angle C; [Eq. (17)] or high values of mean dihedral
angle C, and very low values of frequency f, [Eq. (16)]. On the
other hand, it appeared that the most efficient solutions of set 2 are
characterized by high values to very high values of amplitude A, and
low values to very low values of phase ¢, [see rule (21)] and either
positive very high values of mean dihedral angle C, [Eq. (20)] or
high values of mean dihedral angle C, and very low values of
frequency f,, [Eq. (19)]. These rules are summarized in Table 4. This
work presents a method to find and characterize by design rules the
most efficient kinematics for birdlike flapping-wing UAVs: it has
been demonstrated that highly accurate design rules for the most
efficient Pareto-optimal solutions can be obtained by combining
data-mining techniques such as Kohonen maps and decision trees.
Simple kinematics and simple geometry have been considered in this
study. One can think of complexifying the geometry or the
kinematics to get a more realistic representation. Indeed, a pitching
motion can be added to the dihedral motion and/or take a more
realistic geometry, as described in [20], and/or use an articulated
wing or take into consideration more harmonics in the description of
the dihedral motion.

Appendix: Flight Physics Model

The flow’s relative velocity V' at j-chord location for each section is
given by

V2 = [V, cos(d) — hsin(6 — 6,)]
- - 2 2
V2= [h cos(8—0,) —wg + 41(:9 +V, sin(e)]

V=+V:4+ V2 EZM (Al)
V. 2+AR

where £ is the plunging displacement of leading edge in the flapping
direction, ¢ =8, + 0, is the mean pitch angle, and w, is the
downwash velocity at %—chord location. For pure dihedral motion we
have

h= rircos(y)

2
= Z 2nnfy[C, cos(2anf 1) — B, sin(2unf,1)]

n=1

where r is the distance taken from the root flapping axis to the
considered wing section. The angle of attack y at the %—chopd location
are given by

! [’i cos(6 — 8,) +1cf + V. sin(§) - wu:|
F= V, cos(d) — hsin(6—6,)

The section’s representative vortex dI' (see Fig. Al) and the
circulatory aerodynamic force dF, are given by

AT =V.en(e + oy +6), dF, =pVdldr

with

, [ﬁcos(ﬁ——éa) +%Cé+ V(,(G—é)—wﬂ}
a - —-
V('

Then the circulatory normal force dN, is
dN, =dF, cos(y)

An additional normal midchord force dN,, due to apparent mass
effect, is given by

2
dn, :%ﬁz dr

U, = hcos(d — 6,) — hBsin(d— 6,) + %CG + V.8 cos(8)
Therefore the section’s total attached-flow normal force dN is
dN =dN, +dN,

The chordwise forces due to camber dD_, leading-edge suction dT,
and friction drag dD; are given by

Fig. A1 Incidence correction adopted within the [13] model.
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chVCdr

dD, = =27y (@ + 6) cos(y) =

ov:
2

dT2 = (& + oy + 6) sin(y)

V.V
P cdr]

2
The section friction-drag coefficient C,, is computed by [2]

, 1c
dD, = C,, cdr, drl = (oz +9—Z-‘Z) cos(y)

dT, = mz;r[(dT} +dT?)

_ 0.89
dr = [log(Re)>%¥)

with the Reynolds number Re based on the chord and V. The leading-
edge suction efficiency 1, is fixed to 0.98. Thus, the total chordwise
force dF, is

dF,=d7T,—dD, —dD;

The poststall behavior is locally modeled (for each section) by using
a stall criterion. The stall occurs when

_Ec_e > o
¥ 4lv.|— 5¢Pmax

where o, = 13° or0.23 rad. Then it is assumed thatdD, = 0 and
the other forces are given by

dN=dN, +dN, ., V,=hcos(#—0,) -i—;_-cé‘ + V. sin(6)

14
P 2Vn L‘df, d-NaEI, :-%
PVE
de"-'P = Cdfsep zx cdr

V=(V2+ V2,

dN,, =Ca, dN,

cd

= 1 V.V
g ! i L
ar, = r;IWFZn'(a +48 4Vc) cos(y) 5 cdr

Ssep

The dynamic stall phenomena is accounted for through dT,_ and
de,ep’ which contribute to the normal force (see Fig. A2). The
constants 1, _ and C, ay,,, Were taken equal to, respectively, 1.491 and

0.065 [13]. Now we can derive the equations for section lift dL and
thrust dT forces as follows:

d L = dN cos(f) + dF, sin(f), dT = dF, cos(6) — dN sin(6)

On integration along the span and in time, we get the time-averaged
lift L and thrust T forces as follows:

- fv % - fv [3
L=2f‘#j; £COS(1II) dL dt, T=2f¢.j; [dDdI

One may also compute the instantaneous power required to move the
section against its aerodynamic loads and the norm of the aero-
dynamic moment dM,.,, about the center of gravity of the vehicle,
assuming permanent symmetrical dihedral motion. For attached flow
itis given by

Fig. A2 Modelization of dynamic stall within the [13] model.

dP;, = dF hsin(6— 6,) + dN [1% cos(8 — 8,) + %cé

+dN, B cé] —dM, 6 —dM 6

1 1
de=dMﬂu +dMa‘-'dNa|:ZC—-e} adNF|:§:(;-—e

1
dM,, = EPUszu ctdr

L 1 30 L vy
M, = [lﬁpm. 9V6+128pm. 9:| dr
dMZ,, = [sin(¥)rdT]* + 4[dM , sin(y)]?

For stalled flow we have
dpP;,  =dN, |:Ii cos(8—6,) + %cé}

1
dM,,_ =—[dN,_ + dN,,m][ic -~ ej|

AMzero = [sin(V)rdT + 4[dM,,,, sin(Y)P
with e = 0.25. We can also derive expressions for the span-integrated

and time-averaged power and norm of the aerodynamic moment as
follows:

. fo % - f L 1
Pi,,=2f%”£" dP, dr, Mm=f¢£“{/; dMsm}zdt

Finally, the average propulsive efficiency is defined as follows:

ﬁ_fm
P in
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