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Abstract:The aimof this paper is to provide newperspectives on the relative finite elements accuracy. Starting
from a geometrical interpretation of the error estimate which can be deduced from Bramble–Hilbert lemma,
we derive a probability law that evaluates the relative accuracy, considered as a random variable, between
two finite elements Pk and Pm, k < m. We extend this probability law to get a cumulated probabilistic law for
two main applications. The first one concerns a family of meshes, the second one is dedicated to a sequence
of simplexes constituting a given mesh. Both of these applications could be considered as a first step toward
application for adaptive mesh refinement with probabilistic methods.
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The past decades have seen the development of finite element error estimates due to their influence on im-
proving both accuracy and reliability in scientific computing.

In the a priori error estimates, an unknown (in most of the cases) constant is involved which depends,
among others, on the basis functions of the considered finite element and on a given semi-norm of the exact
solution one wants to approximate. Moreover, error estimates are only upper bounds of the approximation
error yielding that its exact value is unknown.

This was the starting point that motivated us to consider the approximation error as a random variable to
therefore derive a probability law of the relative accuracy between two Lagrange finite elements Pk and Pm,
k < m (see [4, 5]). A first study inspired from the same philosophy was already proposed in [1].

Our aim here is to generalize the results obtained in [4] for a given mesh Th defined by a fixed mesh size
h (corresponding to the largest diameter of all the simplexes of Th). We will extend them either to a family
of meshes or, for a given mesh, to the sequence of the local elements that constitute it. As we will see, to
proceed it, we will need to distinguish between the local and the global accuracy of two given Lagrange finite
elements Pk and Pm. Both of these points of view will be introduced as potential applications for adaptive
mesh refinement.

The paper is organized as follows. We recall in Section 1 the mathematical problem we consider, the
Bramble–Hilbert lemma and the resulting error estimate that allowed us to introduce a probability law for the
relative global accuracy between two finite elements Pk and Pm. Extension to a family of meshes is addressed
in Section 2. In Section 3, one proposes a generalization that describes the relative local accuracy between
two finite elements in a sequence of simplexes belonging to a given mesh. Then, the cumulated probabilistic
law is derived either for a family of meshes or for a sequence of simplexes. Concluding remarks follow.
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1 Comparing global finite elements accuracy by a probabilistic
approach

Let Ω be an open bounded and non empty subset of ℝn and Γ its boundary which we assumed to be C1-
piecewise. Let also u be the solution to the second order elliptic variational formulation:

(VP) { Find u ∈ V solution to:
a(u, v) = l(v) ∀v ∈ V

(1.1)

where V is a given Hilbert space endowed with the norm ‖ ⋅ ‖V , a(⋅, ⋅) is a bilinear, continuous, and V-elliptic
form defined on V × V, and l(⋅) a linear continuous form defined on V. Classically, variational problem (VP)
has one, and only one, solution u ∈ V (see, e.g., [2]). In the sequel and for simplicity, wewill restrict ourselves
to the case where V is a usual Sobolev space of distributions.

Let us also consider the approximation uh of u, solution to the approximate variational formulation:

(VP)h {
Find uh ∈ Vh solution to:
a(uh , vh) = l(vh) ∀vh ∈ Vh

(1.2)

where Vh is a given finite-dimensional subset of V.
To state a corollary of Bramble–Hilbert’s lemma (cf. [6, 7]), we assume thatΩ is exactly covered by amesh

Th composed of NK simplexes Kµ, 1 ⩽ µ ⩽ NK, which respect the classical rules of regular discretization (see,
e.g., [2] for the bidimensional case and [7] in ℝn). Moreover, we denote by Pk(Kµ) the space of polynomial
functions defined on a given simplex Kµ of degree less than or equal to k, k ⩾ 1.

Then, we have the following well-known result [7].

Lemma 1.1. Suppose that there exists an integer k ⩾ 1 such that the approximation uh of Vh is a continuous
piecewise function composed of polynomials which belong to Pk(Kµ), 1 ⩽ µ ⩽ NK . Then, uh converges to u in
H1(Ω):

lim
h→0
‖uh − u‖1,Ω = 0. (1.3)

Moreover, if the exact solution u belongs to Hk+1(Ω), we have the following error estimate:

‖uh − u‖1,Ω ⩽ Ck hk |u|k+1,Ω (1.4)

where Ck is a positive constant independent of h, ‖ ⋅ ‖1,Ω is the classical norm in H1(Ω) and | ⋅ |k+1,Ω is the
semi-norm in Hk+1(Ω).

In the sequel, we remind the probability lawwe derived in [4] which allowed us to evaluate the relative global
accuracy, measured in H1-norm, between two Lagrange finite elements.

We consider two families of Lagrange finite elements Pk and Pm corresponding to a set of values (k,m) ∈
ℕ2 such that 0 < k < m.

The two corresponding inequalities given by (1.4), assuming that the solution u to (VP) belongs to
Hm+1(Ω), are, respectively, written as:

‖u(k)h − u‖1,Ω ⩽ Ckhk |u|k+1,Ω (1.5)

‖u(m)h − u‖1,Ω ⩽ Cmhm |u|m+1,Ω (1.6)

where u(k)h and u(m)h , respectively, denotes the Pk and Pm Lagrange finite element approximations of u, solu-
tion to (VP)h.

In what follows, for simplicity, we set Ck ≡ Ck |u|k+1,Ω and Cm ≡ Cm |u|m+1,Ω. Therefore, inequalities (1.5)
and (1.6) become

‖u(k)h − u‖1,Ω ⩽ Ckhk (1.7)

‖u(m)h − u‖1,Ω ⩽ Cmhm (1.8)
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Fig. 1: Curves fk(h) and fm(h).

which show that the two polynomial curves defined by fk(h) ≡ Ckhk and fm(h) ≡ Cmhm are the upper bounds
of the possible values for the two norms ‖u(k)h − u‖1,Ω and ‖u(m)h − u‖1,Ω. More precisely, inequality (1.7) (resp.
(1.8)) indicates that the norm ‖u(k)h −u‖1,Ω (resp. ‖u

(m)
h −u‖1,Ω) is below the curve fk(h) (resp. fm(h)), see Fig. 1.

As we are interested in comparing the relative positions of these two curves, we introduce their intersec-
tion point h∗ defined by

h∗ ≡ ( CkCm
)
1/(m−k)
= (

Ck |u|k+1,Ω
Cm |u|m+1,Ω

)
1/(m−k)

. (1.9)

Now, as often in numerical analysis, there is no a priori information to surely or better specify the distance
between ‖u(k)h − u‖1,Ω (resp. ‖u(m)h − u‖1,Ω) and the curve fk or its precise value in the interval [0, Ckh

k] due to
(1.7) (resp. the curve fm and the interval [0, Cmhm] due to (1.8)).

Indeed, this situation is the consequence of two main ingredients:
1. The solution u of (VP) is unknown, which motivates the use of a Pk finite element method to build an

approximation u(k)h ;
2. The way the mesh generator processes the mesh is a priori random which leads to a corresponding ran-

dom approximation u(k)h .

It is the reason why we treat the possible values of the norm ‖u(k)h − u‖1,Ω as a random variable defined as
follows.

Let us consider an experiment where the constitution of a randomgrid Th and the corresponding random
approximation u(k)h are involved. Therefore, the approximation error ‖u(k)h − u‖1,Ω can also be viewed as a
random variable, defined by the following probabilistic framework:
– A random trial corresponds to the grid constitution and the associated approximation u(k)h ;
– The probability space Ω contains therefore all the possible results for a given random trial, namely, for

all the possible grids that the mesh generator may processed, or equivalently, for all the corresponding
approximations u(k)h .

Then, for a fixed value of k, we define the random variable X(k) by

X(k) : Ω → [0, Ckhk]
ω ≡ u(k)h → X(k)(ω) = X(k)(u(k)h ) = ‖u

(k)
h − u‖1,Ω . (1.10)

In the sequel, for simplicity, we will set:

iX(k)(u(k)h ) ≡ X
(k)(h).

Now, regarding the absence of information concerning the more likely or less likely values of the norm
‖u(k)h − u‖1,Ω in the interval [0, Ckhk], we will assume that the random variable X(k)(h) has a uniform distri-
bution on the interval [0, Ckhk] in the following meaning:

∀ (α, β) ∈ ℝ2+, 0 ⩽ α < β ⩽ Ckhk : Prob {X(k)(h) ∈ [α, β]} = β − α
Ckhk

. (1.11)
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Fig. 2: Case m − k ̸= 1: shape of the sigmoid distribution
(1.14), P(h) ≡ Prob{X (m)(h) ⩽ X (k)(h)}.

Equation (1.11) means that if one slides the interval [α, β] anywhere in [0, Ckhk], the probability of the event
{X(k)(h) ∈ [α, β]} does not depend on where the interval [α, β] is in [0, Ckhk]; this is the property of unifor-
mity of the random variable X(k). This assumption could be relaxed if we were able to get a complementary
information about the more likely position of X(k)(h) in the interval [0, Ckhk]. This could be possible either
from numerical experiments, or based on new theoretical results regarding error estimates.

We are now able to evaluate the probability of the event

{‖u(m)h − u‖1,Ω ⩽ ‖u
(k)
h − u‖1,Ω} ≡ {X

(m)(h) ⩽ X(k)(h)} (1.12)

to estimate the relative global accuracy between two finite elements of order k and m, k < m.
Let us first start by defining the relative global accuracy between two Lagrange finite elements Pk and

Pm, k < m.

Definition 1.1. Let Pk and Pm, k < m, be two Lagrange finite elements. Then, we will say that Pm is globally
more accurate than Pk if

‖u(m)h − u‖1,Ω ⩽ ‖u
(k)
h − u‖1,Ω . (1.13)

We will recall now the probabilistic law established in [3, 5] to get an estimate on the relative global accuracy
between two Lagrange finite elements Pk and Pm, k < m, for a fixed mesh size h.

Theorem 1.1. Let u ∈ Hk+1(Ω) be the solution to (1.1), and u(i)h , i = k or i = m, k < m, the two corresponding
Lagrange finite element Pi approximation solutions to (1.2). We assume the two corresponding random variables
X(i)(h), i = k or i = m, defined by (1.10) are uniformly distributed on [0, Cihi], where Ci are defined by (1.7)–(1.8).
Then, the probability such that Pm is globallymore accurate than Pk, as introduced in (1.1), is given by:

Prob {X(m)(h) ⩽ X(k)(h)} =



1 − 1
2(

h
h∗)

m−k
, 0 < h ⩽ h∗

1
2(

h∗

h )
m−k

, h ⩾ h∗.
(1.14)

Remark 1.1. Immediate interpretations of the non linear probability law (1.14) are available (see also Fig. 2):
1. Pm finite element is not only asymptoticallymore accurate than Pk as k < m, when h goes to 0, as usually

considered and as a consequence of error estimate (1.4). Indeed, for all h ⩽ h∗, the probability of Pm is
more accurate than Pk belongs to [0.5, 1]. It means that Pm ismore likely accurate than Pk for all of these
values of h, and not only for arbitrarily small values of h.

2. On the contrary when k < m, the finite element Pk is more likely accurate when h > h∗. This new point
of view allows us to recommend that, for specific situations like for adaptive mesh refinement, this finite
element would be more appropriated, as long as one would be able to detect that h > h∗.

The next section is devoted to a possible application of the probabilistic law (1.14) to a family of meshes, for
example, in the process of mesh refinement.
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2 Extension to a family of meshes
The aim of this section is to extend to a family of meshes the previous results we recalled for a given mesh
Th. For this purpose, we introduce a family of N regular meshes (T(n))n=1,N made of simplexes, each mesh
T(n) being characterized by its mesh size hn. Let us also consider two Lagrange finite elements Pk and Pm,
k < m. Therefore, for each mesh T(n), we can write the corresponding probability law (1.14) for the event
{X(m)(hn) ⩽ X(k)(hn)}, associated to the given mesh size hn.

Our aim is now to evaluate the probability such that exactly ne meshes, ne = 0, 1, . . . , N, satisfies Pm
is more accurate than Pk. To this end, let us introduce the sequence of N independent Bernoulli random
variables (Yn)n=1,N defined by:

Yn =


1 if X(m)(hn) ⩽ X(k)(hn)
0 otherwise

(2.1)

and also the random variable SN determined by

SN =
N
∑
n=1

Yn . (2.2)

As each Bernoulli variable Yn indicates if Pm is more accurate than Pk or not on the correspondingmesh T(n),
SN describes the number of meshes among the all N meshes such that Pm is more accurate than Pk.

Remark 2.1. For any mesh T(p) and T(q) belonging to (T(n))n=1,N , characterized by their mesh size hp and hq,
the knowledge of the event ‘Pm is more accurate than Pk’ on T(p) does not enable us to conclude anything
on T(q). Hence, the N random Bernoulli variables Yn, 1 ⩽ n ⩽ N, are considered as independent.

It comes out from the nature of the event ‘Pm is more accurate than Pk’. Indeed, for an unknown exact
solution u and for the corresponding two approximations u(i)hp and u(i)hq , i = k or i = m, one cannot link the
value Yp and Yq, associated to a mesh size hp and hq.

Therefore, we have the following result.

Proposition 2.1. The distribution of probabilities corresponding to the exact number ofmeshes satisfying Pm
is more accurate than Pk is given by

Prob {SN = 0} = (1 − P(h1)) ⋅ ⋅ ⋅ (1 − P(hN)) (2.3)
Prob {SN = ne} = ∑

(i1 ,...,iN )∈{1,...,N}
il ̸=iq , l ̸=q

P(hi1 ) ⋅ ⋅ ⋅P(hine ) ⋅ ⋅ ⋅ (1 − P(hine+1 )) ⋅ ⋅ ⋅ (1 − P(hiN )), 1 ⩽ ne ⩽ N − 1 (2.4)

Prob {SN = N} = P(h1) ⋅ ⋅ ⋅P(hN) (2.5)

where the quantities P(hij ) ≡ Prob {X(m)(hij ) ⩽ X(k)(hij )} are given by the probability distribution (1.14) of
Theorem 1.1.

In what follows, the sequence of values (Prob{SN = ne})ne=0,N will be called the exact probabilistic distribu-
tion of the relative global accuracy.

Proof. To establish formulas (2.3)–(2.5), it is sufficient to notice that N random Bernoulli variables (Yn)n=1,N
defined by (2.1) are independent.

Indeed, (2.3)–(2.5) is a direct generalization of the binomial law for the variable SN we would have to
consider if all the Bernoulli variables (Yn)n=1,N had been defined by the same probability p, given by

p ≡ Prob{Yn = 1} = Prob{X(m)(hn) ⩽ X(k)(hn)} ∀n = 1 to N.

This completes the proof.

Remark 2.2. From Proposition 2.1 one can also get the cumulated distribution of the number of meshes for
which Pm ismore accurate than Pk. It corresponds to the probability such that at least nmeshes, n = 1, . . . , N,
are such that Pm is more accurate than Pk.
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Using the definition of the random variable SN given by (2.2), this cumulated distribution corresponds to
the probabilities defined by

∀ne = 1, . . . , N : Prob {SN ⩾ ne} =
N
∑
j=ne

Prob {SN = j} . (2.6)

Formula (2.6) is not easy to express explicitly, due to formulas (2.3)–(2.5). However, in thenext proposition,we
will prove a recurrence relationwhich allows us to determine an algorithm to compute the exact probabilistic
distribution as well as the cumulated one.

To this end, let pN denote the probability defined by pN ≡ Prob {YN = 1}. Then, we have the following
result.

Proposition 2.2. Let (T(n))n=1,N be a family ofN regularmeshes composedof simplexes, eachmeshT(n) being
characterized by its mesh size hn. Then, we have

∀ ne = 1, N : Prob {SN = ne} = pN Prob {SN−1 = ne − 1} + (1 − pN)Prob {SN−1 = ne} . (2.7)

Proof. Formula (2.7) corresponds to the decomposition of the event {SN = n} into two independent events

event ({SN−1 = ne − 1} ∩ {YN = 1}) and event ({SN−1 = ne} ∩ {YN = 0}).

Then, (2.7) results from classical probabilistic property.

Remark 2.3. Proposition 2.2 enables us to process the computation of the exact probabilistic law which cor-
responds to (Prob {SN = ne})ne=0,N , and therefore, the cumulated one too.

Indeed, first of all, let us notice that

∀n = 1, N : Prob {Sn = n} = Prob{
n
∑
l=1

Yl = n} =
n
∏
l=1

Prob {Yl = 1} = p1 . . . pn (2.8)

as the Bernoulli variables (Yl)l=1,n, ∀ n = 1, N, are independent.
Moreover, with the same arguments, we also notice that

∀n = 1, N : Prob {Sn = 0} = (1 − p1) . . . (1 − pn). (2.9)

Relations (2.8)–(2.9) directly give: Prob {Sn = 0} and Prob {Sn = n} ∀n = 1, N. Therefore, by the help of the
recurrence relation (2.7) and relations (2.8)–(2.9), one can compute step by step the exact probabilistic law
(Prob {SN = ne} )ne=0,N as follows:

Step 1: Prob {S2 = 1} by (2.7)
Step 2: Prob {S3 = 1} , Prob {S3 = 2} by (2.7)

⋅ ⋅ ⋅
Step N: Prob {SN = 1} , . . . , Prob {SN = N − 1} by (2.7)

Remark 2.4. The cumulated probabilistic distribution is then a direct consequence of Proposition 2.2 due to
formula (2.6). Finally, in the particular case corresponding to n = 1, we can derive an explicit expression of
Prob {SN ⩾ 1}. This is the purpose of the next proposition.

Proposition 2.3. Let N be the total number of meshes which belong to a family of regular meshes (T(n))n=1,N
made of simplexes, and hn denote the mesh size of a given mesh T(n). We assume that N = N1 + N2, where
N1 is the number of meshes such that hn ⩽ h∗ and N2 those such that hn > h∗. Then, we have

Prob {SN ⩾ 1} = 1 −
1
2N1
[
h1 . . . hN1

h∗N1
]
m−k
[1 − 12 (

h∗

hN1+1
)
m−k
] . . . [1 − 12 (

h∗

hN
)
m−k
] . (2.10)

Proof. By definition of the opposite event of {SN ⩾ 1}, we can directly write

Prob {SN ⩾ 1} = 1 − Prob {SN = 0} = 1 − (1 − P(h1)) ⋅ ⋅ ⋅ (1 − P(hN)) (2.11)



J. Chaskalovic and F. Assous, Binomial laws to evaluate finite element accuracy | 69

where expression (2.3) was used.
So, taking into account the probability law (1.14) of Theorem 1.1 we canmake explicit the probability such

that on N meshes, at least one mesh satisfies Pm is more accurate than Pk. Indeed, we conclude by using the
definitions of N1 and N2 and the corresponding expressions in the probabilistic law (1.14) to get (2.10).

Remark 2.5. As we recall before, when k < m, it is often sought that the Pm finite element is more accurate
than the Pk one. However, the probability given by (2.10) shows that even the event ‘There is a least onemesh
among N meshes such that Pm is more accurate than Pk’ is not a sure event. Nevertheless, one can prove that
this event is asymptotically sure. It is the purpose of the next proposition based on the following lemma.

Lemma 2.1. Let β be a real number such that 0 < β < 1. Let p be a given integer and (xn)n⩾p be a sequence of
real numbers satisfying 0 < xn ⩽ β ∀ n ⩾ p. Then, the sequence product (ΠN)N∈ℕ defines by ΠN ≡ ∏N

n=p xn
converges to 0 when N goes to +∞.

Proof. As the sequence (xn)n⩾p belongs to the interval ]0, β] such that 0 < β < 1, we can write

0 < ΠN+1
ΠN
= xN+1 ⩽ β < 1. (2.12)

Therefore, ΠN is a decreasing sequence, bounded from below by 0, so it converges.
To compute the limit of the sequence ΠN let us consider the inequalities

0 < xp . . . xN ⩽ ( max
p⩽n⩽N

xn)
N−p+1
⩽ βN−p+1 < 1 (2.13)

since we assume that β belongs to ]0, 1[.
As a consequence, the sequence (βN−p+1)N∈ℕ goes to 0 when N goes to infinity, and due to squeeze the-

orem [8], the sequence ΠN too.

Now we can formulate the following proposition.

Proposition 2.4. Let (T(n))n=1,N be a given family of regular meshes and (hn)n=1,N the corresponding se-
quence of mesh sizes. We assume that there exists hmax ∈ R∗+ such that

∀n > 0 : hn ⩽ hmax such that 0 < P(hmax) < 1. (2.14)

Let also SN be the random variable introduced in (2.2). Then, we have

lim
N→+∞

Prob {SN ⩾ 1} = lim
N→+∞

N
∑
ne=1

Prob {SN = ne} = 1. (2.15)

Proof. We consider the expression of Prob {SN ⩾ 1} given by (2.11) and introduce the sequence (xn)n=1,N de-
fined by xn ≡ 1 − P(hn).

Then, one can write Prob {SN ⩾ 1} as follows

Prob {SN ⩾ 1} = 1 −
N
∏
n=1

xn . (2.16)

Now, one can check from formula (1.14) that

xn = 1 − P(hn) ∈ ]0, 1[ ∀ n = 1, N

since P(hn) ̸= 0 and P(hn) ̸= 1 ∀ hn, 0 < hn ⩽ hmax, as we assume (2.14).
Consequently, as the probabilistic law P(h) defined by (1.14) is decreasing onℝ+, we have

P(hn) ⩾ P(hmax) ∀n = 1, N (2.17)

and finally, there exists a real number β ≡ 1 − P(hmax), 0 < β < 1, such that

xn = 1 − P(hn) ⩽ β < 1 ∀ n = 1, N.

Therefore, from Lemma 2.1 we obtain the claimed asymptotic behavior of Prob {SN ⩾ 1}.
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Remark 2.6. We notice that in Proposition 2.4 the assumption (2.14) corresponds to any concrete application
where only finite mesh sizes are considered.

The idea of Proposition 2.4 is that, for a large number of meshes, the probability to get at least one mesh
such that Pm is more accurate than Pk goes to 1 with the number of meshes. This property could be taken into
account for the adaptive mesh refinement, where a family of meshes is built to handle the large variations of
the approximate solution.

In other words, this result indicates that for a large number of meshes, one has to consider that Pm finite
elements will surely be more accurate, at least on one mesh. However, it is not a sufficient indication to moti-
vate the implementation of these finite elements which are more expensive than the Pk finite elements when
k < m.

Furthermore, to apply this approach to adaptive mesh refinement, one needs to transfer the results of
this section which concern global behaviors of a family of meshes to get local information to refine a given
mesh, mainly depending on the local gradient of the approximated solution. This is the purpose of the next
section.

3 From a global to a local accuracy comparison of finite elements

3.1 A local probability law to compare accuracy of finite elements

In the previous sections, we described a probabilistic approach to estimate for a given mesh Th or for a se-
quence of meshes (T(n))n=1,N , the relative global accuracy between two Lagrange finite elements Pk and Pm,
k < m. We obtained laws of probability that depend on the mesh size h, namely the size of the largest diam-
eter in the mesh. Accordingly, the results we got are global and do not explicitly consider any local behavior
that could play an important role, particularly when one considers adaptive mesh refinement.

Our purpose is now to derive a local comparison tool between two Lagrange finite elements. This ap-
proach will be possible if one recalls that the error estimate (1.4), deduced from Bramble Hilbert’s lemma, is
elaborated with two main ingredients. The first one is Cea’s lemma and the second one is the interpolation
error (see [7]).

So, for any simplex K belonging to a regular mesh Th, let us introduce Π(k)K , the local K-Lagrange inter-
polation operator of degree k, that defines the local interpolation by the help of polynomials of degree lower
than or equal to k on K.

Then, one can write the global interpolation error ‖u − Πhu‖1,Ω as follows:

‖u − Πhu‖1,Ω = ( ∑
K∈Th

‖u − Π(k)K u‖21,K)
1/2

(3.1)

where Πh denotes the global Lagrange interpolation operator on the mesh Th.
So, under the conditions of Lemma 1.1, for each K ∈ Th, to obtain the next local estimate, we follow

P. A. Raviart and J.M. Thomas, (see [7]), to get

‖u − Π(k)K u‖1,K ⩽ C


k h
k
K |u|k+1,K ⩽ C



k h
k
K |u|k+1,Ω (3.2)

where hK denotes the diameter of the simplex K and C


k a positive constant which does not depend on K and
hK, but depends on the reference element defining the Lagrange Pk finite element [7].

Then, the quantity C


k |u|k+1,Ω does not depend on K either. This independency will be further crucial
when we will extend our results to the mesh refinement process.

Moreover, as a consequence of Céa’s lemma, we can also consider the following estimate:

‖u − uh‖1,Ω ⩽
M
α
‖u − Πhu‖1,Ω (3.3)

where M is the continuity constant and α the ellipticity constant of the bilinear form a(⋅, ⋅).
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Now, due to (3.1) and (3.3), we highlight that the accuracy of a given finite element Pk can be locally
characterized by estimate (3.2).

As a consequence, we define the relative local accuracy between two finite elements Pk and Pm as the
relative local interpolation accuracy on a given simplex K as follows.

Definition 3.1. Let Pk and Pm, k < m, be two Lagrange finite elements and K a given simplex which belongs
to Th. We will say that Pm is locallymore accurate than Pk on K if

‖u − Π(m)K u‖1,K ⩽ ‖u − Π(k)K u‖1,K . (3.4)

Therefore, if we assume that the exact solution u of the variational formulation (VP) belongs to Hm+1(Ω), we
can write inequality (3.2) for both of the Π(i)K local operators, i = k or i = m, and we have

‖u − Π(k)K u‖1,K ⩽ C


k h
k
K |u|k+1,Ω (3.5)

‖u − Π(m)K u‖1,K ⩽ C


m hmK |u|m+1,Ω . (3.6)

Setting C 

k ≡ C


k |u|k+1,Ω and C 

m ≡ C


m |u|m+1,Ω, inequalities (3.5) and (3.6) become

‖u − Π(k)K u‖1,K ⩽ C 

kh
k
K (3.7)

‖u − Π(m)K u‖1,K ⩽ C 

mhmK (3.8)

which are the twins of inequalities (1.7) and (1.8).
Themaindifference between (1.7)–(1.8) and (3.7)–(3.8) is themeaning of h. Here, in (3.7)–(3.8), hK denotes

the local diameter of the simplex K, whereas in (1.7)–(1.8), h is the involved maximummesh size of Th.
As a consequence, if we introduce the random variables X(i)K (hK), i = k or i = m and k < m, defined by

X(i)K (hK) ≡ ‖u − Π
(i)
K u‖1,K (3.9)

we candirectly get the probability of the event {X(m)K (h) ⩽ X
(k)
K (h)} corresponding to Pm is locallymore accurate

than Pk on K specified in Definition 3.1 by adapting formulas (1.14) as follows.

Corollary 3.1. Let K be a given simplex of diameter hK belonging to a given regular mesh Th. Let u ∈ Hk+1(Ω)
be the solution to (1.1) and u(i)h , i = k or i = m, k < m, the corresponding Lagrange finite element Pi approxi-
mation solutions to (1.2).

We assume the two corresponding random variables X(i)K (h), i = k or i = m, defined by (3.9) are uniformly
distributed on [0, C 

i h
i
K], where C



i are defined by (3.7)–(3.8). Then, the probability such that Pm is locally
more accurate than Pk on K is given by:

Prob {X(m)K (h) ⩽ X
(k)
K (hK)} =



1 − 1
2(

hK
h∗)

m−k
, 0 < hK ⩽ h∗

1
2(

h∗

hK
)
m−k

, hK ⩾ h∗
(3.10)

where h∗ is defined by (1.9), but where the constants C 

k and C 

m introduced in (3.7) and (3.8) replace Ck and
Cm defined in (1.7) and (1.8).

Remark 3.1. We notice that the corresponding value of h∗ does not depend on the simplex K as we consider
in inequality (3.2) the semi-norm of u in Hk+1(Ω), on the one hand, and as the constant C 

k , (due to Ck), does
not depend on K too, as we mention above, on the other hand.

Therefore, formula (3.10) gives us an evaluation of the local accuracy comparison between two finite elements
Pk and Pm based on the local comparison accuracy between the corresponding K-Lagrange interpolation
errors of degrees k and m.

We are now in position to extend this local result to a sequence of simplexes which belongs to a fixed
mesh and which are related to adaptive mesh refinement process. This is the purpose of the next subsection.
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3.2 Toward applications for adaptive mesh refinement

We now consider a givenmesh Th composed of N simplexes Kµ whose diameters are denoted by (hµ)µ=1,N .
For each simplex Kµ, 1 ⩽ µ ⩽ N, we consider the probability law of the event ‘Pm is locally more accurate

than Pk on Kµ’ which is given by (3.10). Now, as in Section 2, let us introduce the N Bernoulli random inde-
pendent variables (Yµ)µ=1,N defined by (2.1) where we replace X(i)(h), i = k or i = m, by X(i)Kµ

(h), and also the
corresponding random variable SN defined by (2.2).

Thanks to the total similitude between the mathematical formalism of Section 2 and the present one, we
directly get the analogous formulas of (2.3)–(2.5) and (2.10) but with a total different meaning. Particularly,
by adapting (2.10) of Proposition 2.3 to the current situation, we get the following result.

Proposition 3.1. Let us denote by N the total number of simplexes of a given mesh Th. Assuming that N =
N1 + N2, where N1 is the number of simplexes satisfying hµ ⩽ h∗ and N2 the number of simplexes such that
hµ > h∗. Then, we have

Prob {SN ⩾ 1} = 1 −
1
2N1
[
h1 . . . hN1

h∗N1
]
m−k
[1 − 12 (

h∗

hN1+1
)
m−k
] . . . [1 − 12 (

h∗

hN
)
m−k
] . (3.11)

Remark 3.2. We would like to highlight that even if the formalism is totally equivalent between this section
and Section 2, one has to carefully distinguish the different meanings of the two situations.

Indeed, here the Bernoulli variables (Yµ)µ=1,N determine, for a given elementary simplex Kµ of a given
mesh, if Pm is locallymore accurate than Pk on Kµ, while the Bernoulli variables introduced in the previous
section characterize, for a givenmesh belonging to a sequence ofmeshes, if Pm is globallymore accurate than
Pk on this mesh.

Proposition 3.1 shows again that, albeit if it is usually assumed that finite elements Pm are more accurate
than Pk, k < m, formula (3.11) highlights that even to get at least one simplex on N such that Pm is locally
more accurate than Pk is not a sure event, as its probability is different from one. Moreover, one can get here
a result similar to Proposition 2.4, after modifying our framework to the adaptive mesh refinement process.

So, let us describe what happens for a given mesh Th, where adaptive mesh refinement is applied, to
improve the computed solution in steep gradient areas. For our purpose, we distinguish in Th two kinds of
simplexes. Those who are not going to be changed, and those which will be refined. Let us denote by N,
N ⩽ N, the number of new simplexes created in the mesh by the refinement process.

We also introduce N1, N1 ⩽ N, the number of new simplexes such that hµ ⩽ h∗ and N2 = N − N1 the
rest of new simplexes. Therefore, the random variable SN defined by (2.2) becomes SN , and describes now
the total number of new simplexes in the refinement process such that Pm is locally more accurate than Pk.
We remark that these considerations make sense, since h∗ does not depend on the simplexes K involved in
the mesh Th (see Remark 3.1).

Then, our interest is to determine the behavior of Prob {SN ⩾ 1}, (equivalently determined by (3.11) if one
changes N by N), when N goes to infinity, namely, where the number of new simplexes N concerned by the
refinement process becomes large. This situation corresponds to the framework of adaptive mesh refinement
where one is usually interested by locally refining the mesh: this is performed by identifying in the mesh the
areas such that the gradient of the approximated solution is large.

Therefore, we are now in position to determine for a given set of new simplexes N which becomes large,
the asymptotic probability such that there exists at least one new simplex where Pm is locally more accurate
than Pk.

This is the purpose of the following proposition which is the twin of Proposition 2.4.

Proposition 3.2. Let Th be a given mesh composed of N simplexes and let N, N ⩽ N, be the number of
new simplexes obtained by mesh refinement. We also assume that there exists hmax ∈ ℝ∗+ which satisfies the
equivalent condition of (2.14) for all the diameters hµ, µ = 1, N, defining the new simplexes. Then we have

lim
N→+∞

Prob {SN ⩾ 1} = 1. (3.12)
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This result is not surprising due to the total similarity between formulas (2.10) and (3.11), (if one replaces N
by N in (3.11)).

Again, it shows that one has to carefully consider the relative local accuracy between Pm and Pk Lagrange
finite elements, k < m, except if locally, the number of simplexes becomes very large.

However, for a fixed number N of new simplexes, this phenomena ismore pronounced depending on the
minimum number of simplexes ne, ne = 1, N, satisfying Pm would bemore accurate than Pk. Unfortunately,
deriving the analogous formulas of (2.3)–(2.5) and (2.6) for a sequence of simplexes, to explicit the probability
of the event {SN ⩾ ne} is inextricable.

So, one can compare for two different values of ne the behavior of the corresponding probabilities. This
is the purpose of the following proposition.

Proposition 3.3. Let ne,1 and ne,2 be two integers such that 1 ⩽ n

e,1 < n


e,2 ⩽ N, and let SN be the random

variable equivalently defined as (2.2). Then, we have

Prob {SN ⩾ ne,2} ⩽ Prob {SN ⩾ ne,1} . (3.13)

Proof. The proof results from the following identity

Prob {SN ⩾ ne,1} =
ne,2−1

∑
ne= ne,1

Prob {SN = ne} + Prob {SN ⩾ ne,2} (3.14)

and consequently, (3.13) holds.

Therefore, Proposition 3.3 clearly indicates that the larger ne the less the probability such that at least ne
simplexes satisfy Pm is locally more accurate than the Pk.

This points out that we cannot easily disqualify the Pk finite element in comparison with the Pm one,
particularly for a mesh refinement process.

Remark 3.3. Notice that it is also possible to compute the exact distribution and the associated cumulated
distribution, by applying the same principles as those applied to derive formula (2.7) of Proposition 2.2 and
formulas (2.8) and (2.9).

4 Discussion and conclusion
In this paper, we proposed a new geometrical-probabilistic approach to evaluate the relative accuracy be-
tween two Lagrange finite elements Pk and Pm, k < m. Basically, we distinguished two cases: a global ap-
proach and a local one. Both cases are based on a probabilistic interpretation of the error estimate one can
derive from Bramble–Hilbert lemma.

The global approach is based on the probabilistic law (1.14) we derived in [4], fromwhich a first extension
to a family of meshes is proposed. Regarding the local accuracy between two finite elements, we recall the
two main components required to establish the a priori error estimate and we highlight that it is centrally
based on the local interpolation error. This leads us to transpose our global analysis to the local one to get
the corresponding probability distribution (3.10).

Afterwards, we extended our global and local results to two principal applications, both of them are
concerned with adaptive mesh refinement. The global probability law has been used to describe the case of
a family of meshes while the local probabilistic one helped us to treat a fixed mesh composed of a sequence
of simplexes.

These results strengthen those we got in [4] and show that even if we consider a family ofmeshes (respec-
tively, a sequence of simplexes), the event ‘to get at least onemesh (respectively, at least one simplex) such that
Pm is more globally (respectively, locally) accurate than Pk’ is not a sure event, (cf. Propositions 2.3, 3.1, and
Proposition 3.3 for a more general case).
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However, it is proved in Propositions 2.4 and 3.2 that, for a great number of meshes (respectively, a great
number of simplexes), this event is asymptotically sure. We also proved a recurrence relation, see (2.2), in
the case of a family of meshes, which can be adapted to the case of a sequence of simplexes. This enables to
compute, for example, the probability such that at least 50 percents of meshes (resp., at least 50 percents of
simplexes) are such that Pm is more globally (resp., locally) accurate than Pk.

Finally, we have to mention that for all concrete applications, one will have to precisely estimate the
critical value h∗. Indeed, all the probabilistic laws we derived are based on formulas (1.14) and (3.10) which
depend on h∗. Since h∗ strongly depends on the semi-norm Hk+1(Ω) of the exact solution u to the variational
problem, all the available techniques which belong to a priori estimate theory of solutions to partial differen-
tial equations will be involved to evaluate h∗.

We are presently working on numerical examples for which (nearly) everything could be computed. This
allows us tomake our resultsmore concrete. Basically, themethod is based on the determination of statistical
estimators, that will lead us to numerically specify the value of h∗.
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