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In this paper, we derive a variant of the Taylor theorem to obtain a new minimized
remainder. For a given function f defined on the interval [a, b], this formula is derived
by introducing a linear combination of f ′ computed at n + 1 equally spaced points in
[a, b], together with f ′′(a) and f ′′(b). We then consider two classical applications of this
Taylor-like expansion: the interpolation error and the numerical quadrature formula.
We show that using this approach improves both the Lagrange P2- interpolation error
estimate and the error bound of the Simpson rule in numerical integration.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Even today, improving the accuracy of approximation remains a challenging problem in numerical analysis. Here, we
re concerned with the difficulty of accurately determining the error estimate in numerical methods. This article is part
f a series of articles in which this topic is addressed. More precisely, we derive here a variant of Taylor’s theorem to
btain a new minimized remainder that we apply to interpolation error and numerical quadrature formula.
From a mathematical point of view, the origin of such problems already appears in Rolle’s theorem and in Lagrange

nd Taylor’s theorems, see for instance [1]. Indeed, there exists an unknown point involved in the remainder of Taylor’s
xpansion, that leads to some ‘‘uncertainty’’.
Consequently, most error estimates focus generally on the asymptotic behavior of the error. For instance in finite

lement approximation, a priori error estimates consider the asymptotic behavior of the difference between the exact
nd the approximate solution, as the mesh size h tends to zero.
In this context, several approaches have been proposed to determine a way to improve the accuracy of approximation.

or example, within the framework of numerical integration, we refer the reader to [2,3] or [4], and references therein.
rom another point of view, due to the lack of information, heuristic methods were considered, basically based on a
robabilistic approach, see for instance [5–8] or [9–11]. This allows to compare different numerical methods, and more
recisely finite element, for a given fixed mesh size, see [12].
Nevertheless, Taylor’s theorem introducing an unknown point in its remainder, this makes it very difficult (often

mpossible) to compute the interpolation error, and consequently the approximation error of a given numerical method.
herefore, the possibility to accurately estimate the upper bounds of the error remains an important issue. In this article,
e study the values of the numerical constants involved in such estimates, trying to reduce them as small as possible.
In this framework, we proposed in [13] a refined first-order expansion formula in Rn, to get an reduced remainder,

ompared to the one obtained by usual Taylor’s formula. Then, we investigate the related properties in the interpolation
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error estimates and in Lagrange finite element error estimates. In the context of quadrature rules applications, such a
problem was considered in the past years, and is often referred as the perturbed (or corrected) quadrature rules, see for
instance [3] or [4]. In other examples, the authors obtained in [14,15] or [16], the trapezoid inequality by the difference
of sup and inf bound of the first derivative.

In this paper, we are concerned by a second order Taylor-like theorem, leading to an optimized reduced remainder.
pplications we have in mind are the interpolation error based on a second-order polynomial and the Simpson quadrature
ule (see for instance [17]). Concerning the Simpson inequality, we also refer the reader to [18].

The main difficulty addressed in this article concerns the development and use of a new Taylor-type formula, with
he smallest possible remainder. Another important aspect is the application of this new formula to interpolation error
nd numerical quadrature formulas. The paper is organized as follows. In Section 2, we present the main result, which
reats on the improved second order Taylor-like formula. In Section 3, we consider two classical applications of the
aylor expansion: the interpolation error is investigated in Section 3.1, whereas the Simpson’s quadrature rule is studied
ection 3.2. In both cases, we derive new results on error estimate. Concluding remarks follow.

. A new second order expansion formula

To begin with, let us recall the well known second order Taylor’s formula [19]. We consider (a, b) ∈ R2, a < b, and a
function f ∈ C3([a, b]). Then, following Taylor’s theorem in one real variable, there exist two real constants m3 and M3
such that, for all x ∈ [a, b],

− ∞ < m3 = inf
a≤x≤b

f ′′′(x) and M3 = sup
a≤x≤b

f ′′′(x) < +∞ , (1)

and we have

f (b) = f (a) + (b − a)f ′(a) +
(b − a)2

2
f ′′(a) + (b − a)2ϵa,2(b), (2)

where

lim
b→a

ϵa,2(b) = 0,

and
(b − a)

6
m3 ⩽ ϵa,2(b) ⩽

(b − a)
6

M3. (3)

In the same spirit we proposed in [20] for the first order case, our aim is now to derive a new second order Taylor-like
formula that gives us a minimized remainder. To that aim, let us first recall the main result obtained in [20] for the first
order case. Given two reals a, b ∈ R, a < b and an integer n ∈ N∗, we proved the following result

Theorem 2.1. Let f be a real mapping define on [a, b] which belongs to C2([a, b]), such that: ∀x ∈ [a, b], −∞ < m2 ⩽
f ′′(x) ⩽ M2 < +∞. Then we have the following first order expansion:

f (b) = f (a) + (b − a)

(
f ′(b) + f ′(a)

2n
+

1
n

n−1∑
k=1

f ′

(
a + k

(b − a)
n

))
+ (b − a)ϵ(1)

a,n+1(b), (4)

here :

|ϵ
(1)
a,n+1(b)| ⩽

(b − a)
8n

(M2 − m2).

Moreover, this result is optimal in the sense that the weights in (4) involved in the linear combination of f ′ at the

equally spaced points a + k
(b − a)

n
guarantee the remainder ϵ

(1)
a,n+1(b) to be minimum.

In order to prove the main theorem for the second order case considered in this paper, we will need the following
emma proved in [20]:

emma 2.2. Let u be a continuous function on [a, b], and, for n ∈ N∗, let (ak)0⩽k⩽n be a finite sequence of real numbers. We
ave the following formula:

n−1∑
k=0

∫ n

k
aku(t)dt =

n−1∑
k=0

∫ k+1

k
Sku(t)dt, with Sk =

k∑
j=0

aj.
2
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From now on, we assume that n ∈ N∗. To obtain a second order Taylor-like formula, we first consider the following
eneralization of (4) involving the ‘‘reminder’’ ϵ(2)

a,n+1(b):

f (b) = f (a) + (b − a)

(
f ′(b) + f ′(a)

2n
+

1
n

n−1∑
k=1

f ′

(
a + k

(b − a)
n

))

+(b − a)2
n∑

k=0

ωk(n)f ′′

(
a + k

(b − a)
n

)
+ (b − a)2ϵ(2)

a,n+1(b), (5)

hat we rewrite for simplicity as

f (b) = f (a) + (b − a)Λ(1)
n (a, b) + (b − a)2Λ(2)

n (a, b) + (b − a)2ϵ(2)
a,n+1(b),

ith

Λ(1)
n (a, b) =

f ′(b) + f ′(a)
2n

+
1
n

n−1∑
k=1

f ′

(
a + k

(b − a)
n

)
, (6)

nd Λ
(2)
n (a, b) defined by determining

Λ(2)
n (a, b) =

n∑
k=0

ωk(n)f ′′

(
a + k

(b − a)
n

)
, (7)

such that (5) holds, and so, ϵ(2)
a,n+1(b) goes to 0 when b → a. Our aim is now to determine the sequence of real weights

(ωk(n))0≤k≤n that minimizes the remainder ϵ
(2)
a,n+1(b). this result is stated in the following theorem:

Theorem 2.3. Let f be a real mapping defined on [a, b] which belongs to C3([a, b]), such that: ∀x ∈ [a, b], −∞ < m3 ⩽

f ′′′(x) ⩽ M3 < +∞. If the weights (ωk(n))0≤k≤n satisfy
n∑

k=0

ωk(n) = 0, then we have:

ω0(n) = −ωn(n) =
3

32n2 and ωk(n) = 0, ∀0 < k < n, (8)

and the following second order expansion hold:

f (b) = f (a) + (b − a)Λ(1)
n (a, b) + (b − a)2Λ(2)

n (a, b) + (b − a)2ϵ(2)
a,n+1(b), (9)

here Λ(1)
n (a, b) is given by (6) and Λ(2)

n (a, b) is expressed as

Λ(2)
n (a, b) = −

3
32n2

(
f ′′(b) − f ′′(a)

)
. (10)

oreover, this result is optimal since the weights introduced in (8) guarantee that the remainder ϵ
(2)
a,n+1(b) is minimum, and

atisfies:
(b − a)
96n2 (2m3 − M3) ≤ ϵ

(2)
a,n+1(b) ≤

(b − a)
96n2 (2M3 − m3). (11)

onsequently, lim
b→a

ϵ
(2)
a,n+1(b) = 0.

roof. Let us observe first that, using (4), ϵ(2)
a,n+1(b) can be written as

ϵ
(2)
a,n+1(b) =

ϵ
(1)
a,n+1(b)
b − a

− Λ(2)
n (a, b) . (12)

n [20], it is proved (see expression (16) together with (28)) that the remainder ϵ
(1)
a,n+1(b) of the expansion (4) can be

xpressed by

ϵ
(1)
a,n+1(b) =

n−1∑
k=0

∫ k+1
n

k
n

(
1
2n

+
k
n

− t
)

φ′(t)dt, (13)

here φ′ is the derivative of the function φ defined by:

φ : [0, 1] −→ R
′
t ↦−→ f (a + t(b − a)).

3
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Now, we perform an integration by parts of the integral involved in (13) and we get∫ k+1
n

k
n

(
1
2n

+
k
n

− t
)

φ′(t)dt =
k(k + 1)

2n2

[
φ′

(
k + 1
n

)
− φ′

(
k
n

)]
−

∫ k+1
n

k
n

[(
1
2n

+
k
n

)
t −

t2

2

]
φ′′(t)dt,

=

∫ k+1
n

k
n

[
k(k + 1)

2n2 −

(
1
2n

+
k
n

)
t +

t2

2

]
φ′′(t)dt.

Using this expression, ϵ(1)
a,n+1(b) can be rewritten as:

ϵ
(1)
a,n+1(b) =

n−1∑
k=0

∫ k+1
n

k
n

[
t2

2
−

(
1
2n

+
k
n

)
t +

k(k + 1)
2n2

]
φ′′(t)dt.

Consequently, from (12), ϵ(2)
a,n+1(b) can be written

ϵ
(2)
a,n+1(b) =

1
b − a

n−1∑
k=0

∫ k+1
n

k
n

[
t2

2
−

(
1
2n

+
k
n

)
t +

k(k + 1)
2n2

]
φ′′(t)dt −

1
b − a

n∑
k=0

ωk(n)φ′

(
k
n

)
. (14)

ow, using that φ′

(
k
n

)
= φ′(1)−

∫ 1

k
n

φ′′(t)dt together with Lemma 2.2, and a change of variable t ′ = nt , the last sum in

14) can be expressed as:
n∑

k=0

ωk(n)φ′

(
k
n

)
=

n∑
k=0

ωk(n)φ′(1) −

n−1∑
k=0

∫ k+1
n

k
n

Sk(n)φ′′(t)dt,

here Sk(n) =

k∑
j=0

ωj(n), for all 0 ≤ k ≤ n − 1.Consequently, expression (14) becomes:

ϵ
(2)
a,n+1(b) =

1
b − a

n−1∑
k=0

∫ k+1
n

k
n

[
t2

2
−

(
1
2n

+
k
n

)
t +

k(k + 1)
2n2 + Sk(n)

]
φ′′(t)dt −

1
b − a

φ′(1)
n∑

k=0

ωk(n). (15)

et us assume for simplicity (see Remark 1 below) that:
n∑

k=0

ωk(n) = 0. (16)

hen, setting

λ = Sk(n) +
k(k + 1)

2n2 ,

the expression (15) of ϵ
(2)
a,n+1(b) becomes:

ϵ
(2)
a,n+1(b) =

1
b − a

n−1∑
k=0

∫ k+1
n

k
n

[
t2

2
−

(
1
2n

+
k
n

)
t + λ

]
φ′′(t)dt.

Substituting t =
k + s
n

in this integral, and setting Pλ̄(s) = s2 − s + λ̄ with

λ̄ ≡ 2n2λ − k(k + 1) = 2n2Sk(n) , (17)

e get:

ϵ
(2)
a,n+1(b) =

1
2(b − a)n3

n−1∑
k=0

∫ 1

0
Pλ̄(s)φ

′′

(
s + k
n

)
ds. (18)

ow, assuming that the discriminant ∆ = 1 − 4λ̄ of Pλ̄ is strictly positive, it exists (t1, t2) ∈ R2, t1 < t2, such that:
λ̄(t1) = Pλ̄(t2) = 0.In the following, our aim is to derive an estimate of ϵ

(2)
a,n+1(b). For this purpose, we split the integral

bove depending on the roots of Pλ̄. We get:∫ 1

Pλ̄(t)φ
′′

(
t + k

)
dt =

∫ t1
Pλ̄(t)φ

′′

(
t + k

)
dt +

∫ t2
Pλ̄(t)φ

′′

(
t + k

)
dt +

∫ 1

Pλ̄(t)φ
′′

(
t + k

)
dt.
0 n 0 n t1 n t2 n
4
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Keeping in mind that, for all x ∈ [0, 1] and for all t ∈ [a, b],

φ′′(x) = (b − a)2f ′′′(a + x(b − a)) and m3 ⩽ f ′′′(t) ⩽ M3,

then, Pλ̄(t) keeps a constant sign on each of the three above integrals and we have:

m3(b − a)2
∫ t1

0
Pλ̄(t)dt ≤

∫ t1

0
Pλ̄(t)φ

′′

(
t + k
n

)
dt ≤ M3(b − a)2

∫ t1

0
Pλ̄(t)dt,

M3(b − a)2
∫ t2

t1

Pλ̄(t)dt ≤

∫ t2

t1

Pλ̄(t)φ
′′

(
t + k
n

)
dt ≤ m3(b − a)2

∫ t2

t1

Pλ̄(t)dt,

m3(b − a)2
∫ 1

t2

Pλ̄(t)dt ≤

∫ 1

t2

Pλ̄(t)φ
′′

(
t + k
n

)
dt ≤ M3(b − a)2

∫ 1

t2

Pλ̄(t)dt,

hat yields the two following inequalities∫ 1

0
Pλ̄(t)φ

′′

(
t + k
n

)
dt ≤ m3(b − a)2

∫ t2

t1

Pλ̄(t)dt + M3(b − a)2
[∫ t1

0
Pλ̄(t)dt +

∫ 1

t2

Pλ̄(t)dt
]
, (19)∫ 1

0
Pλ̄(t)φ

′′

(
t + k
n

)
dt ≥ M3(b − a)2

∫ t2

t1

Pλ̄(t)dt + m3(b − a)2
[∫ t1

0
Pλ̄(t)dt +

∫ 1

t2

Pλ̄(t)dt
]
. (20)

e have now to deal with these inequalities. Since they have the same structure, we will consider only the first one, the
econd one can be treated in the same way. Dividing by (b−a)2 and computing the integrals, Pλ̄(t) being a second-degree
olynomial function, we easily get:∫ 1

0
Pλ̄(t)φ

′′

(
t + k
n

)
dt

(b − a)2
≤ (M3 − m3)(t1 − t2)

[
t21 + t1t2 + t22

3
−

t1 + t2
2

+ λ̄

]
+ M3

(
λ̄ −

1
6

)
.

sing that ti, (i = 1, 2), are the roots of the polynomial Pλ̄(.), we have, for i = 1, 2, t2i = ti− λ̄ and this inequality becomes:∫ 1

0
Pλ̄(t)φ

′′

(
t + k
n

)
dt

(b − a)2
≤ (M3 − m3)(t1 − t2)

[
t1 + t2 + t1t2 − 2λ̄

3
−

t1 + t2
2

+ λ̄

]
+ M3

(
λ̄ −

1
6

)
.

ince t1, t2 are the roots of the second-degree polynomial Pλ̄(.),

t1 + t2 = 1, t1t2 = λ̄ and t1 − t2 = −

√
1 − 4λ̄,

hat leads to:∫ 1

0
Pλ̄(t)φ

′′

(
t + k
n

)
dt

(b − a)2
≤

(M3 − m3)
6

(1 − 4λ̄)3/2 + M3

(
λ̄ −

1
6

)
.

inally, due to the symmetry between m3 and M3 in the right-hand sides of (19) and (20), we can write

ϕ1(λ̄) ≤

∫ 1

0
Pλ̄(t)φ

′′

(
t + k
n

)
dt

(b − a)2
≤ ϕ2(λ̄), (21)

here ϕi(λ̄), (i = 1, 2) are defined by:

ϕ1(λ̄) =
(m3 − M3)

6
(1 − 4λ̄)3/2 + m3

(
λ̄ −

1
6

)
,

ϕ2(λ̄) =
(M3 − m3)

6
(1 − 4λ̄)3/2 + M3

(
λ̄ −

1
6

)
.

e conclude the proof by determining the λ̄ that minimizes the distance between ϕ1(λ̄) and ϕ2(λ̄). Let us define

ϕ(λ̄) = ϕ2(λ̄) − ϕ1(λ̄) = (M3 − m3)
[
(1 − 4λ̄)3/2

+ λ̄ −
1
]
,

3 6
5
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which satisfies ϕ′(λ̄) = 0 for λ̄ =
3
16

, that is, the minimum of ϕ(λ̄). This also shows a posteriori that 1 − 4λ̄ > 0, i.e. the

iscriminant of Pλ̄(t) is positive. For this value of λ̄, the inequalities (21) are written as:

2m3 − M3

48
≤

∫ 1

0
Pλ̄(t)φ

′′

(
t + k
n

)
dt

(b − a)2
≤

2M3 − m3

48
,

nd summing then over k, we obtain for ϵ
(2)
a,n+1(b) in (18):

(b − a)
96n2 (2m3 − M3) ≤ ϵ

(2)
a,n+1(b) ≤

(b − a)
96n2 (2M3 − m3).

Moreover, we can also get the weights ωk(n), (k = 0, n), involved in Λ
(2)
n (a, b) (cf. (7)). Indeed, substituting λ̄ =

3
16

in the

expression λ̄ = 2n2Sk(n), from (17), we get

Sk(n) =

k∑
j=0

ωj(n) =
3

32n2 , ∀k = 0, . . . , n − 1.

Hence, for k = 0, ω0(n) =
3

32n2 whereas ωk(n) = 0 for all 0 ≤ k ≤ n − 1. Finally, we determine the last weight wn(n) by
sing the assumption (16), that leads to

ωn(n) = −ω0(n) = −
3

32n2 .

nd Λ
(2)
n (a, b) introduced in (7) satisfies (10). ■

emark 1. Condition (16) on the weights ωk(n) in Theorem 2.3 is a kind of closure condition but is not a restrictive one.
ndeed, without (16), we will replace in (18)ϵ(2)

a,n+1(b) by

ϵ
(2)
a,n+1(b) =

1
2(b − a)n3

n−1∑
k=0

∫ 1

0
Pλ̄(t)φ

′′

(
t + k
n

)
dt −

1
b − a

φ′(1)
n−1∑
k=0

ωk(n),

nd consequently, the corresponding weights ωk(n) would be written as:

ω0(n) =
3

32n2 and ωk(n) = 0, ∀ 1 ≤ k ≤ n.

Then, following the same steps, we will get the following estimates for ϵ
(2)
a,n+1(b):

(2m3 − M3)(b − a)
96n2 −

3
32n2

φ′(1)
(b − a)

≤ ϵ
(2)
a,n+1(b) ≤

(2M3 − m3)(b − a)
96n2 −

3
32n2

φ′(1)
(b − a)

,

r also
(2m3 − M3)(b − a)

96n2 −
3M2

32n2 ≤ ϵ
(2)
a,n+1(b) ≤

(2M3 − m3)(b − a)
96n2 −

3m2

32n2 .

urthermore, still without the condition (16) on the weights, the second order Taylor’s-like formula (9) would be expressed
s

f (b) = f (a) + (b − a)Λ(1)
n (a, b) +

3
32n2 (b − a)2f ′′(a) + (b − a)2ϵ(2)

a,n+1(b), (22)

he coefficient before f ′′(b) vanishes.

Let us compare now the remainder (11) of the new formula (9)–(10) with the reminder (3) of the classical formula
2). As one can see, the former remainder is significantly smaller than the latter one: indeed, we have to compare 1/6
ith 1/32n2 whose ratio is equal 3/16n2. The worst case of this ratio corresponds to n = 1 where the new remainder is
pproximatively 5 times smaller than the one obtained by the classical formula.

. Applications to the approximation error

In this section, we consider two classical applications of the Taylor expansion: the Lagrange polynomial interpolation
nd the numerical quadrature. In both cases, we will derive new formula of interpolation and quadrature, obtained by
sing the refined second-order expansion formula (9)–(10). Then, we will compare the errors obtained when using the
tandard Taylor expansion and our generalized approach. We begin with the interpolation error.
6
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3.1. The interpolation error

Consider first the generalized Taylor-like expansion (9)–(10) for n = 2 In this case, for any function f which belongs
o C3([a, b]), this formula is expressed as

f (b) = f (a) + (b − a)
f ′(b) + 2f ′

(
a + b
2

)
+ f ′(a)

4
−

3(b − a)2

128

(
f ′′(b) − f ′′(a)

)
+ (b − a)2ϵ(2)

a,3(b), (23)

here the remainder ϵa,3(b) satisfies

(b − a)
384

(2m3 − M3) ≤ ϵ
(2)
a,3(b) ≤

(b − a)
384

(2M3 − m3). (24)

n order to derive a first application of this formula, let us consider the case of the P2-Lagrange interpolation (see for
nstance [1,17]), where a given function f is interpolated on [a, b] by a polynomial Π[a,b](f ) of degree less than or equal
to two. Hence, we can write:

∀x ∈ [a, b] : Π[a,b](f )(x) =
(x − c)(x − b)
(a − c)(a − b)

f (a) +
(x − a)(x − c)
(b − a)(b − c)

f (b) +
(x − a)(x − b)
(c − a)(c − b)

f (c) , (25)

here c =
a + b
2

denotes the midpoint of [a, b].As it is well known, one has by construction Π[a,b](f )(a) = f (a),

[a,b](f )(b) = f (b) and Π[a,b](f )(c) = f (c). Let us investigate the consequences of formula (23) when it is used to evaluate
he interpolation error e(.) defined by

∀x ∈ [a, b] : e(x) = Π[a,b](f )(x) − f (x),

nd compare it with the one obtained when using the classical second order Taylor’s formula.The classical result [21,22]
oncerning the P2−Lagrange interpolation error claims that, for any function f that belongs to C3([a, b]), we have:

|e(x)| ≤
(x − a)(b − x)|x − c|

6
sup
a≤x≤b

|f ′′′(x)|,

nd using that sup
a≤x≤b

(x − a)(b − x)|x − c| =
(b − a)3

12
√
3

, we get

|e(x)| ≤
(x − a)(b − x)|x − c|

6
sup
a≤x≤b

|f ′′′(x)| ≤
(b − a)3

72
√
3

sup
a≤x≤b

|f ′′′(x)|. (26)

This result is usually derived by considering, for x ∈ [a, b], x different from a, b and c , the function g(t) defined by

g(t) = f (t) − Π[a,b](f )(t) −

(
f (x) − Π[a,b](f )(x)

)
(t − a)(t − c)(t − b)
(x − a)(x − c)(x − b)

.

y construction, g(t) vanishes on a, c, b and on the point t = x. Then, by applying three times Rolle’s theorem, we obtain
hat there exists a point ξx ∈ ]a, b[ \ {c, x} such that g ′′′(ξx) = 0.Moreover, the third-order derivative of Π[a,b](f )(t), which
is a polynomial of degree 2, vanishes, and the third-order derivative of the function t −→ (t−a)(t−c)(t−b) is a constant
equal to 6. Therefore, we obtain that there exists ξx ∈ ]a, b[ \ {c, x} such that

g ′′′(ξx) = f ′′′(ξx) −

(
f (x) − Π[a,b](f )(x)

)
6

(x − a)(x − c)(x − b)
= 0,

hat leads to (26).
Now, to evaluate the difference between the classical Taylor’s formula and the formula we derived in (23), we consider

he two constants m3 and M3 introduced in (1), and we reformulate estimate (26) by using the classical Taylor formula
1). We get the following result:

emma 3.1. Let f be a function C3([a, b]) satisfying (1). Then the second order Taylor’s theorem leads to the following
interpolation error estimate:

|e(x)| ≤
(b − a)3

72
√
3

(2M3 − m3) . (27)
7
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Proof. We begin by writing the Lagrange P2−polynomial Π[a,b](f ) given by (25) by using the classical second order Taylor’s
formula (2). For this purpose, we substitute in (25), f (a), f (b) and f (c) expressed in the following form:

f (a) = f (x) + (a − x)f ′(x) +
(a − x)2

2
f ′′(x) + (a − x)2ϵx,2(a),

f (b) = f (x) + (b − x)f ′(x) +
(b − x)2

2
f ′′(x) + (b − x)2ϵx,2(b),

f (c) = f (x) + (c − x)f ′(x) +
(c − x)2

2
f ′′(x) + (c − x)2ϵx,2(c),

here, by the help of (1) and (3), the remainders ϵx,2(a), ϵx,2(b) and ϵx,1(c) satisfy the inequations, with M =

ax{|m3|, |M3|},

|ϵx,2(a)| ≤
(x − a)

6
M, |ϵx,2(b)| ≤

(b − x)
6

M and |ϵx,2(c)| ≤
|c − x|

6
M.

Then, (25) gives:

Π[a,b](f )(x) =
(x − c)(x − b)
(a − c)(a − b)

(
f (x) + (a − x)f ′(x) +

(a − x)2

2
f ′′(x) + (a − x)2ϵx,2(a)

)
+

(x − a)(x − c)
(b − a)(b − c)

(
f (x) + (b − x)f ′(x) +

(b − x)2

2
f ′′(x) + (b − x)2ϵx,2(b)

)
+

(x − a)(x − b)
(c − a)(c − b)

(
f (x) + (c − x)f ′(x) +

(c − x)2

2
f ′′(x) + (c − x)2ϵx,2(c)

)
.

rom this expression, we can compute the coefficients of f (x), f ′(x) and f ′′(x). We get that the first one is equal to 1,
hereas the two others are equal to 0. Consequently, we obtain for Π[a,b](f )(x):

Π[a,b](f )(x) = f (x) +
(x − c)(x − b)
(a − c)(a − b)

(a − x)2ϵx,2(a) +
(x − a)(x − c)
(b − a)(b − c)

(b − x)2ϵx,2(b)

+
(x − a)(x − b)
(c − a)(c − b)

(c − x)2ϵx,2(c) . (28)

n order to determine the error e(x) introduced above, we have to compute the three last terms involved in (28), namely

(x − c)(x − b)
(a − c)(a − b)

(a − x)2ϵx,2(a) +
(x − a)(x − c)
(b − a)(b − c)

(b − x)2ϵx,2(b) +
(x − a)(x − b)
(c − a)(c − b)

(c − x)2ϵx,2(c).

ow recall that, from the classical Taylor formula, ϵx,2(a) =
a − x
6

f ′′′(ξ (a, x)) (the same for ϵx,2(b) and ϵx,2(c)). Using that

is the midpoint of [a, b], we have c − a =
b − a
2

, and the expression above is equal to

(a − x)(b − x)(c − x)
3(b − a)2

[
(x − a)2f ′′′(ξ (a, x)) + (b − x)2f ′′′(ξ (b, x)) − 2(c − x)2f ′′′(ξ (c, x))

]
. (29)

To estimate (29), we will bound separately the two terms involved. For the first one, by studying the function f (x) =

(a − x)(b − x)(c − x), we easily obtain that

−
(b − a)

36
√
3

≤
(a − x)(b − x)(c − x)

3(b − a)2
≤

(b − a)

36
√
3

.

or equivalently that

|(a − x)(b − x)(c − x)|
3(b − a)2

≤
(b − a)

36
√
3

.

For the second term of (29), using (1), we obtain that

gmin(x) ≤ (x − a)2f ′′′(ξ (a)) + (b − x)2f ′′′(ξ (b)) − 2(c − x)2f ′′′(ξ (c)) ≤ gmax(x),

here

gmin(x) = m3(x − a)2 + m3(b − x)2 − 2M3(c − x)2 ,

gmax(x) = M3(x − a)2 + M3(b − x)2 − 2m3(c − x)2 .

To continue, we have to determine the extremum values of the functions gmin(x) and gmax(x). We will consider only gmax(x),
he case of g (x) being analogous. A simple computation gives that the maximum of g is reached at the boundaries
min max

8
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x = a, x = b, with

gmax(a) = gmax(b) = (b − a)2
(
M3 −

m3

2

)
.

imilarly, we obtain the minimum of gmin(x) is equal to

gmin(a) = gmin(b) = (b − a)2
(
m3 −

M3

2

)
,

so that the second term of (29) can be bounded as follows:

(2m3 − M3)
(b − a)2

2
≤ (x − a)2f ′′′(ξ (a)) + (b − x)2f ′′′(ξ (b)) − 2(c − x)2f ′′′(ξ (c)) ≤ (2M3 − m3)

(b − a)2

2
.

Now, putting these results together, we finally get that

|e(x)| ≤
(b − a)3

72
√
3

(2M3 − m3)

■

emark 2. This result can be compared with the more classical one recalled in (26). In fact the only difference comes
rom the term supa≤x≤b |f ′′′(x)| that is replaced here by 2M3 − m3, that takes care of the difference between the sup and
the inf of the function f ′′′(x), rather than considering their maximum.

Let us now derive the corresponding result when we use the new second order Taylor-like formula (23) in the
expression of the interpolation polynomial Π[a,b](f ) defined by (25). This is the purpose of the following lemma.

Lemma 3.2. Let f ∈ C3([a, b]), then we have the following interpolation error estimate:

∀x ∈ [a, b] :

⏐⏐⏐⏐f (x) − Π∗

[a,b](f )(x)
⏐⏐⏐⏐ ≤

(b − a)3

1536
√
3
(2M3 − m3) , (30)

here Π∗

[a,b](f )(x) is defined by

Π∗

[a,b](f )(x) = Π[a,b](f )(x)

−
(x − a)(b − x)(c − x)

(b − a)2

[
f ′(a) − 2f ′(c) + f ′(b)

2
+ f ′

(
x + a
2

)
− 2f ′

(
x + c
2

)
+ f ′

(
x + b
2

)]
−

3(x − a)(b − x)(c − x)
64(b − a)2

(
f ′′(a)(a − x) + 2f ′′(c)(x − c) + f ′′(b)(b − x)

)
(31)

roof. We begin to write f (a), f (b) and f (c) by the help of (23):

f (a) = f (x) + (a − x)
f ′(a) + 2f ′

(
x + a
2

)
+ f ′(x)

4
−

3(a − x)2

128

(
f ′′(a) − f ′′(x)

)
+ (a − x)2ϵ(2)

x,3(a),

f (b) = f (x) + (b − x)
f ′(b) + 2f ′

(
x + b
2

)
+ f ′(x)

4
−

3(b − x)2

128

(
f ′′(b) − f ′′(x)

)
+ (b − x)2ϵ(2)

x,3(b),

f (c) = f (x) + (c − x)
f ′(c) + 2f ′

(
x + c
2

)
+ f ′(x)

4
−

3(c − x)2

128

(
f ′′(c) − f ′′(x)

)
+ (c − x)2ϵ(2)

x,3(c),

here ϵx,3 satisfies (24) with obvious changes of notations. More precisely, we have

|ϵ
(2)
x,3(a)| ≤

(x − a)
384

(2M3 − m3) , |ϵ
(2)
x,3(b)| ≤

(b − x)
384

(2M3 − m3) , |ϵ
(2)
x,3(c)| ≤

|c − x|
384

(2M3 − m3) . (32)

hen, by substituting f (a), f (b) and f (c) in the interpolation polynomial (25), we obtain

Π[a,b](f )(x) =

(x − c)(x − b)
(
f (x) + (a − x)

f ′(a) + 2f ′

(
x + a
2

)
+ f ′(x)

−
3(a − x)2 (

f ′′(a) − f ′′(x)
)
+ (a − x)2ϵ(2)

x,3(a)
)

(a − c)(a − b) 4 128
9
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+
(x − a)(x − c)
(b − a)(b − c)

(
f (x) + (b − x)

f ′(b) + 2f ′

(
x + b
2

)
+ f ′(x)

4
−

3(b − x)2

128

(
f ′′(b) − f ′′(x)

)
+ (b − x)2ϵ(2)

x,3(b)
)

+
(x − a)(x − b)
(c − a)(c − b)

(
f (x) + (c − x)

f ′(c) + 2f ′

(
x + c
2

)
+ f ′(x)

4
−

3(c − x)2

128

(
f ′′(c) − f ′′(x)

)
+ (c − x)2ϵ(2)

x,3(c)
)

rom this expression, we obtain that the coefficients of f (x) is equal to 1, whereas the one before f ′(x) is equal to 0.
Let us compute now the terms before the other derivatives of f (x). For the first order derivatives, we have the following

expressions

(x − a)(b − x)(c − x)
(b − a)2

[
f ′(a) − 2f ′(c) + f ′(b)

2
+ f ′

(
x + a
2

)
− 2f ′

(
x + c
2

)
+ f ′

(
x + b
2

)]
,

whereas the terms in f ′′(x) can be expressed as

3(x − a)(b − x)(c − x)
64(b − a)2

(
f ′′(a)(a − x) + 2f ′′(c)(x − c) + f ′′(b)(b − x)

)
.

inally, we obtain for Π[a,b](f )(x):

Π[a,b](f )(x) = f (x) +
(x − a)(b − x)(c − x)

(b − a)2

[
f ′(a) − 2f ′(c) + f ′(b)

2
+ f ′

(
x + a
2

)
− 2f ′

(
x + c
2

)
+ f ′

(
x + b
2

)]
+

3(x − a)(b − x)(c − x)
64(b − a)2

(
f ′′(a)(a − x) + 2f ′′(c)(x − c) + f ′′(b)(b − x)

)
+

(x − c)(x − b)
(a − c)(a − b)

(a − x)2ϵ(2)
x,3(a) +

(x − a)(x − c)
(b − a)(b − c)

(b − x)2ϵ(2)
x,3(b) +

(x − a)(x − b)
(c − a)(c − b)

(c − x)2ϵ(2)
x,3(c). (33)

ow, let us consider the new interpolation polynomial Π∗

[a,b](f ) introduced in (31). With this, the interpolation polynomial
[a,b](f ) of (33) can be expressed as

Π∗

[a,b](f ) = f (x) + E(x, a, b),

here the function error E(x, a, b) is defined by

E(x, a, b) =
(x − c)(x − b)
(a − c)(a − b)

(a − x)2ϵ(2)
x,3(a) +

(x − a)(x − c)
(b − a)(b − c)

(b − x)2ϵ(2)
x,3(b) +

(x − a)(x − b)
(c − a)(c − b)

(c − x)2ϵ(2)
x,3(c).

sing (32), we obtain the following bound

|E(x, a, b)| ≤ 2
|(a − x)(b − x)(c − x)|

(b − a)2
2M3 − m3

384

(
(x − a)2 + (b − x)2 + 2(c − x)2

)
. (34)

e already saw before that

|(a − x)(b − x)(c − x)|
(b − a)2

≤
b − a

12
√
3
,

so we only have to bound the second term of (34), that is (x − a)2 + (b − x)2 + 2(c − x)2. Using a method similar to the
one used for (29), we obtain that

max
a≤x≤b

(
(x − a)2 + (b − x)2 + 2(c − x)2

)
=

3
2
(b − a)2.

Putting all together, we obtain that

|E(x, a, b)| ≤
2M3 − m3

1536
√
3

(b − a)3,

hich completes the proof of this lemma. ■

emark 3. Let us compare the interpolation errors of Lemma 3.2 with the classical one of Lemma 3.1. First, note that
∗

[a,b](f ) is a polynomial of degree less than or equal to 3. So, interpolation errors (27) and (30) cannot be compared
nymore, since Π[a,b](f ) is a polynomial of degree less than or equal to 2. However, if we consider the Lagrange polynomial

Π
(3)
[a,b](f ) of degree less than or equal to 3, we can compare the corresponding interpolation error with result (30), assuming

that the function f ∈ C4([a, b]). Indeed, the standard estimate in literature requires the function f to belong to C4([a, b]).
Hence, denoting by M4 = sup f (4)(x) and by m4 = inf f (4)(x), the Lagrange interpolating polynomial error bound can
a≤x≤b a≤x≤b

10
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be written (see for instance [1,23])⏐⏐⏐⏐f (x) − Π
(3)
[a,b](f )(x)

⏐⏐⏐⏐ ≤
(b − a)4

1296
M4, with M4 := max(|M4|, |m4|) . (35)

Now, to compare this estimate with (30), we assume that variations of the third derivative f (3) are not ‘‘extreme’’, so that
2M3 − m3 can approximatively be replaced by M3 := max(|m3|, |M3|). In addition, for a function f smooth enough (at
least C4([a, b])), we can (roughly speaking) also assume that |f (3)| behaves like (b−a)|f (4)|. Hence, the error estimate (30)
can be expressed as⏐⏐⏐⏐f (x) − Π∗

[a,b](f )(x)
⏐⏐⏐⏐ ≤

(b − a)4

1536
√
3
M4.

This gives a bound which is more than 2 times smaller than the corresponding one in (35).

Remark 4. Let us give an elementary numerical example. Consider the interval [a, b] = [0, 1], and the function
f (x) = ln(1 + x). Formula (23) gives

ln(2) = ln(1) +

1
2 + 2 2

3 + 1
4

−
3

128
(−

1
4

+ 1) + ϵ
(2)
a,3 =

1061
1536

+ ϵ
(2)
a,3 ≃ 0.6907 + ϵ

(2)
a,3

nd

|ϵ
(2)
a,3| ≤

15
1536

≃ 1/100.

With the same data, classical Taylor’s formula (2) gives

ln(2) = ln(1) + 1 +
1
2
(−1) + ϵa,2 =

1
2

+ ϵa,2

and

|ϵa,2| ≤
1
3
.

Hence, the improved formula leads to a much more accurate approximation of ln(2).

3.2. The quadrature error

We consider now, for any integrable function f defined on [a, b], Simpson’s quadrature rule [21] whose formula is
given by∫ b

a
f (x)dx ≃

b − a
6

(
f (a) + 4 f

(
a + b
2

)
+ f (b)

)
. (36)

he reason we consider (36) is that this quadrature formula corresponds to approximate the function f by its Lagrange
olynomial interpolation Π[a,b](f ), of degree less than or equal to two, which is given by (25). Thus, in the classical
iterature of numerical integration (see for example [3,21,24]), we can find the standard Simpson inequality⏐⏐⏐⏐∫ b

a
f (x) dx −

b − a
6

(
f (a) + 4 f

(
a + b
2

)
+ f (b)

)⏐⏐⏐⏐ ≤
(b − a)5

2880
sup
a≤x≤b

|f (4)(x)|, (37)

for any function four times differentiable f on [a, b], whose fourth derivative is accordingly bounded on [a, b]. Now, if the
function f is not four times differentiable, or if the fourth derivative f (4) is not bounded on [a, b], we cannot apply the
formula above. Therefore, if we consider a function f that is only C3 on [a, b], we have the following estimate [17,25]⏐⏐⏐⏐∫ b

a
f (x) dx −

b − a
6

(
f (a) + 4 f

(
a + b
2

)
+ f (b)

)⏐⏐⏐⏐ ≤
(b − a)4

192
sup
a≤x≤b

|f ′′′(x)|, (38)

Let us prove now a result that gives estimate (38) in an alternative display, based on the classical Taylor formula.

Lemma 3.3. Let f ∈ C3([a, b]) which satisfies (1). Then, we have the following estimate:⏐⏐⏐⏐∫ b

a
f (x) dx −

b − a
6

(
f (a) + 4 f

(
a + b
2

)
+ f (b)

)⏐⏐⏐⏐ ≤
5(b − a)4

1152
(M3 − m3).

roof. To derive this estimate, let us begin with the classical second order Taylor’s formula (2), from which we have
erived above the expression (28) of polynomial Π (f ). Then, by integrating the difference f (x) − Π (f )(x) between
[a,b] [a,b]

11
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a and b, we get∫ b

a
(f (x) − Π[a,b](f )(x)) dx =

∫ b

a

(
(x − c)(b − x)
(c − a)(b − a)

(a − x)2

2
ϵx,2(a)

+
(x − a)(c − x)
(b − a)(b − c)

(b − x)2

2
ϵx,2(b) +

(x − a)(x − b)
(c − a)(b − c)

(c − x)2

2
ϵx,2(c)

)
dx. (39)

However, it is well known [1] that the P2−Lagrange interpolation polynomial Π[a,b](f ) given by (25) also fulfills:∫ b

a
Π[a,b](f )(x) dx =

b − a
6

(f (a) + 4f (c) + f (b)) . (40)

ow, let us introduce the usual error in the quadrature rule E(f ) defined by

E(f ) ≡

∫ b

a
f (x)dx −

b − a
6

(f (a) + 4f (c) + f (b)) .

sing the expressions ϵx,2(a), ϵx,2(b) and ϵx,2(c) (see proof of Lemma 3.1), Eqs. (39) and (40) give

E(f ) =

∫ b

a

(x − a)(b − x)(c − x)
3(b − a)2

(
(x − a)2f ′′′(ξ (a)) + (b − x)2f ′′′(ξ (b)) − 2 (c − x)2f ′′′(ξ (c))

)
dx

hat we split, for convenience, in three integrals I(a), I(b) and I(c), so that

E(f ) = I(a) + I(b) − I(c)

ith

I(a) =
1

3(b − a)2

∫ b

a
(x − a)3(b − x)(c − x)f ′′′(ξ (a))dx ,

I(b) =
1

3(b − a)2

∫ b

a
(x − a)(b − x)3(c − x)f ′′′(ξ (b))dx ,

I(c) =
2

3(b − a)2

∫ b

a
(x − a)(b − x)(c − x)3f ′′′(ξ (c))dx .

o obtain estimates of E(f ), we will consider separately each of these integrals. We detailed here the computations for
(a), the others terms can be treated similarly. Noting that the term (x − a)3(b − x)(c − x) is positive for a ≤ x ≤ c and
negative for c ≤ x ≤ b, we split the integral and we get, using the mean value theorem, that there exists a constant
a < C1,a < c , (respectively c < C2,a < b), such that∫ c

a
(x − a)3(b − x)(c − x)f ′′′(ξ (a))dx = f ′′′(C1,a)

∫ c

a
(x − a)3(b − x)(c − x)dx ,∫ b

c
(x − a)3(b − x)(c − x)f ′′′(ξ (a))dx = f ′′′(C2,a)

∫ b

c
(x − a)3(b − x)(c − x)dx .

It remains now to compute the integral above. Owing to the relation c = (a + b)/2, a straightforward computation gives
us ∫ c

a
(x − a)3(b − x)(c − x)dx =

(b − a)6

960
, and

∫ b

c
(x − a)3(b − x)(c − x)dx = −

3(b − a)6

320
.

sing now inequalities (1), we readily get

(m3 − 9M3)
(b − a)4

2880
≤ I(a) =

(b − a)4

2880

(
f ′′′(C1,a) − 9f ′′′(C2,a)

)
≤ (M3 − 9m3)

(b − a)4

2880
.

The same computations for I(b) gives∫ c

a
(x − a)(b − x)3(c − x)dx =

3(b − a)6

320
, and

∫ b

c
(x − a)(b − x)3(c − x)dx = −

(b − a)6

960
,

so that

(9m3 − M3)
(b − a)4

2880
≤ I(b) =

(b − a)4

2880

(
9f ′′′(C1,b) − f ′′′(C2,b)

)
≤ (9M3 − m3)

(b − a)4

2880
.

imilarly for I(c), where the polynomial in the integral is odd with respect to x = c , we get∫ c

(x − a)(b − x)(c − x)3dx =
(b − a)6

, and
∫ b

(x − a)(b − x)(c − x)3dx = −
(b − a)6

,

a 768 c 768

12
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so that

(m3 − M3)
(b − a)4

1152
≤ I(c) =

(b − a)4

1152

(
f ′′′(C1,c) − f ′′′(C2,c)

)
≤ (M3 − m3)

(b − a)4

1152
.

Putting all together, we finally proved that

5(m3 − M3)
(b − a)4

1152
≤ E(f ) = I(a) + I(b) − I(c) ≤ 5(M3 − m3)

(b − a)4

1152
. □

Let us consider now the corresponding quadrature formula denoted I(f ), based on the generalized Taylor-like expansion
(23) and defined by:

I(f ) =
b − a
6

[
f (a) + 4 f

(
a + b
2

)
+ f (b)

]
+

(b − a)3

240

[
f ′′

(
a
2

)
− 2f ′′

(
c
2

)
+ f ′′

(
b
2

)]
−

(b − a)3

2560

(
f ′′(a) + 2f ′′(c) + f ′′(b)

)
(41)

he corresponding quadrature error estimate is then given by the following lemma:

emma 3.4. Let f ∈ C3([a, b]) which satisfies (1), with a third derivative f ′′′ L-Lipschitz. Then, we have the following estimate:⏐⏐⏐⏐∫ b

a
f (x) dx − I(f )

⏐⏐⏐⏐ ≤
L (b − a)3(a2 + ab + b2)

512
+

5(b − a)4

36864
(2M3 − m3) . (42)

oreover, if ab < 0, we have:⏐⏐⏐⏐∫ b

a
f (x) dx − I(f )

⏐⏐⏐⏐ ≤
L (b − a)5

512
+

5(b − a)4

36864
(2M3 − m3) . (43)

roof. We consider the expression (33) of the polynomial function Π[a,b](f )(x). By integrating between a and b the
difference f (x) − Π[a,b](f )(x), we obtain:∫ b

a

(
f (x) − Π[a,b](f )(x)

)
dx =

−

∫ b

a

(x − a)(b − x)(c − x)
(b − a)2

[
f ′(a) − 2f ′(c) + f ′(b)

2
+ f ′

(
x + a
2

)
− 2f ′

(
x + c
2

)
+ f ′

(
x + b
2

)]
(44)

−

∫ b

a

3(x − a)(b − x)(c − x)
64(b − a)2

(
f ′′(a)(a − x) + 2f ′′(c)(x − c) + f ′′(b)(b − x)

)
dx (45)

−

∫ b

a

(x − c)(x − b)
(a − c)(a − b)

(a − x)2ϵ(2)
x,3(a) +

(x − a)(x − c)
(b − a)(b − c)

(b − x)2ϵ(2)
x,3(b) +

(x − a)(x − b)
(c − a)(c − b)

(c − x)2ϵ(2)
x,3(c)dx (46)

n the following of the proof, we will consider one by one, each line (44), (45) and (46) of the above formula:
Given that∫ b

a
(x − a)(b − x)(c − x)dx = 0,

he first line (44) can be written as

−
1

(b − a)2

∫ b

a
(x − a)(b − x)(c − x)F ′

a,b,c(x)dx , (47)

where we denote F ′

a,b,c(x) = f ′

(
x + a
2

)
− 2f ′

(
x + c
2

)
+ f ′

(
x + b
2

)
. We begin to write f ′

(
x + a
2

)
, f ′

(
x + c
2

)
and

f ′

(
x + b
2

)
, by the help of the first order Taylor’s formula. We get

f ′

(
x + a
2

)
= f ′

(
a
2

)
+

x
2
f ′′

(
a
2

)
+

x2

8
f ′′′
(
ξ1(x)

)
,

a
2

< ξ1(x) <
x + a
2

,

f ′

(
x + c
2

)
= f ′

(
c
2

)
+

x
2
f ′′

(
c
2

)
+

x2

8
f ′′′
(
ξ2(x)

)
,

c
2

< ξ1(x) <
x + c
2

,

f ′

(
x + b

)
= f ′

(
b
)

+
x
f ′′

(
b
)

+
x2

f ′′′
(
ξ3(x)

)
,

b
< ξ1(x) <

x + b
.

2 2 2 2 8 2 2
13
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a

Substituting these expressions in (47), we obtain that the term with the first derivatives is equal to zero. The first non
vanishing term in (47) (with the second derivatives) is equal to

−
1

(b − a)2

(
f ′′

(
a
2

)
− 2f ′′

(
c
2

)
+ f ′′

(
b
2

))∫ b

a

x
2
(x − a)(b − x)(c − x)dx

= −
(b − a)3

240

(
f ′′

(
a
2

)
− 2f ′′

(
c
2

)
+ f ′′

(
b
2

))
. (48)

ow, the last term of (47), that contributes to the error bound gives

−
1

8(b − a)2

∫ b

a

[
f ′′′
(
ξ1(x)

)
− 2f ′′′

(
ξ2(x)

)
+ f ′′′

(
ξ3(x)

)]
x2(x − a)(b − x)(c − x)dx . (49)

et us consider the term with the third derivatives of (49). Using that f ′′′ is L-Lipschitz, we have

|f ′′′
(
ξ1(x)

)
− 2f ′′′

(
ξ2(x)

)
+ f ′′′

(
ξ3(x)

)
| ≤ |f ′′′

(
ξ1(x)

)
− f ′′′

(
ξ2(x)

)
| + |f ′′′

(
ξ3(x)

)
− f ′′′

(
ξ2(x)

)
|

≤ L |ξ1(x) − ξ2(x)| + L |ξ3(x) − ξ2(x)|

≤
3
4
L (b − a) +

3
4
L (b − a) =

3
2
L (b − a) ,

sing that a < ξ1(x) < c ,
a + c
2

< ξ2(x) <
b + c
2

and c < ξ3(x) < b. In these conditions, (49) can be bounded in absolute
alue by

3 L
16(b − a)

∫ b

a
x2(x − a)(b − x)|c − x|dx.

Given that∫ b

a
x2(x − a)(b − x)|c − x|dx =

(b − a)4

96
(a2 + ab + b2),

49) can be bounded by

3 L(b − a)3

1536
(a2 + ab + b2) =

L (b − a)3

512
(a2 + ab + b2).

ssuming (for instance) that ab < 0, as for example for [a, b] = [−1, 1], we readily get that a2 + ab + b2 ≤ (b − a)2 and

L (b − a)3

512
(a2 + ab + b2) ≤

L (b − a)5

512
. (50)

onsider now the second line (45) that can be decomposed into three terms. Let us consider for example the first one,
amely

−
3f ′′(a)

64(b − a)2

∫ b

a
(x − a)(b − x)(c − x)(a − x)dx.

We can explicitly compute this integral that yields∫ b

a
(x − a)(b − x)(c − x)(a − x)dx = −

(b − a)5

120
.

onsequently, the first term of (45) is equal to

−
3f ′′(a)

64(b − a)2

∫ b

a
(x − a)(b − x)(c − x)(a − x)dx =

(b − a)3f ′′(a)
2560

.

imilarly, for the second term of (45), we get

−
6f ′′(c)

64(b − a)2

∫ b

a
(x − a)(b − x)(c − x)(x − c)dx =

(b − a)3f ′′(c)
1280

,

nd, for the last one of (45)

−
3f ′′(b)

64(b − a)2

∫ b

a
(x − a)(b − x)(c − x)(b − x)dx =

(b − a)3f ′′(b)
2560

.

Summing up, the second line (45) gives the following contribution

(b − a)3 (
f ′′(a) + 2f ′′(c) + f ′′(b)

)
. (51)
2560
14
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Let us consider now the last line (46) that can be expressed as, c being the midpoint of [a, b]:

2
(b − a)2

∫ b

a
−(x − a)2(b − x)(c − x)ϵ(2)

x,3(a) + (x − a)(b − x)2(c − x)ϵ(2)
x,3(b) − 2(x − a)(b − x)(c − x)2ϵ(2)

x,3(c) dx,

the absolute value of which being bounded by the sum of three terms J(a) + J(b) + 2J(c), where we define

J(a) =
2

(b − a)2

∫ b

a
(x − a)2(b − x)

⏐⏐c − x
⏐⏐⏐⏐ϵ(2)

x,3(a)
⏐⏐dx ,

J(b) =
2

(b − a)2

∫ b

a
(x − a)(b − x)2

⏐⏐c − x
⏐⏐⏐⏐ϵ(2)

x,3(b)
⏐⏐dx ,

J(c) =
2

(b − a)2

∫ b

a
(x − a)(b − x)(c − x)2

⏐⏐ϵ(2)
x,3(c)

⏐⏐dx .

Now, we will bound separately each of these 3 terms, using again the estimates (32) to bound ϵ
(2)
x,3(a), ϵ

(2)
x,3(c) and ϵ

(2)
x,3(b).

e have:

|J(a)| ≤
2

(b − a)2
2M3 − m3

384

∫ b

a
(x − a)3(b − x)|c − x|dx ,

|J(b)| ≤
2

(b − a)2
2M3 − m3

384

∫ b

a
(x − a)(b − x)3|c − x|dx ,

|J(c)| ≤
2

(b − a)2
2M3 − m3

384

∫ b

a
(x − a)(b − x)|c − x|3dx .

Using similar computations as above (see proof of Lemma 3.3), straightforward computations give∫ b

a
(x − a)3(b − x)|c − x|dx =

∫ b

a
(x − a)(b − x)3|c − x|dx =

(b − a)6

96
,

and ∫ b

a
(x − a)(b − x)|c − x|3dx =

(b − a)6

384
.

Putting all together, we finally obtain that the last line (46) is bounded by the term

5
32

(b − a)4

1152
(2M3 − m3) . (52)

inally, combining estimates (50) and (52), and adding the contributions (48) and (51) to the quadrature approximation
f the integral, we get the error estimate (43). ■

Let us conclude this section by several remarks.

1. To obtain estimate (43), we used that a2 + ab + b2 ≤ (b − a)2. In fact, in several cases, we can derive a better
estimate of the form a2 + ab + b2 ≤

(b−a)2
m ,m > 1. For instance, for [a, b] = [−1, 1], we readily get m = 4, leading

to an improved error bound.
2. We are now interested to compare the relative numerical weights between the two terms involved in estimate

(43), namely

L (b − a)5

512
and

5(b − a)4

36864
(2M3 − m3).

As this comparison depends on the constants m3, M3 and L, it is not reachable in a general case. Hence, we will
consider a numerical example, where we will be able to avoid the numerical evaluation of L. Namely, for a given
interval [a, b], (a < b and ab < 0), we introduce the function

f (x) = (x − a)p, 3 ≤ p < 4, where f ′′′(x) = p(p − 1)(p − 2)(x − a)p−3.

For these values of p, the function f belongs to C3([a, b]) but is not four times derivable at point a. Then, to estimate
the quadrature error (43), we have to evaluate the term (49), that is the absolute value of the quantity X defined
by

X := −
1

8(b − a)2

∫ b

a

[
f ′′′
(
ξ1(x)

)
− 2f ′′′

(
ξ2(x)

)
+ f ′′′

(
ξ3(x)

)]
x2(x − a)(b − x)(c − x)dx.

As in the proof of Lemma 3.4, we have to bound the terms |f ′′′
(
ξ1(x)

)
− f ′′′

(
ξ2(x)

)
| and |f ′′′

(
ξ3(x)

)
− f ′′′

(
ξ2(x)

)
|. Let

us deal with the first one, the second being similar. We have, assuming for instance ξ1(x) < ξ2(x),

f ′′′
(
ξ (x)

)
− f ′′′

(
ξ (x)

)
= p(p − 1)(p − 2)

(
(ξ (x) − a)p−3

− (ξ (x) − a)p−3).
1 2 1 2

15
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Now, recall that a < ξ1(x) < c whereas
a + c
2

< ξ2(x) <
b + c
2

, we obtain that

−

(
3
4

)p−3

(b − a)p−3
≤ (ξ1(x) − a)p−3

− (ξ2(x) − a)p−3
≤

[(
1
2

)p−3

−

(
1
4

)p−3]
(b − a)p−3,

so that

|f ′′′
(
ξ1(x)

)
− f ′′′

(
ξ2(x)

)
| ≤

(
3
4

)p−3

(b − a)p−3.

Using the same estimate for |f ′′′
(
ξ3(x)

)
− f ′′′

(
ξ2(x)

)
|, and continuing the computation exactly as in the proof of

Lemma 3.4, we obtain that |X | can be bounded by

|X | ≤

(
3
4

)p−3 p(p − 1)(p − 2)
384

(b − a)p+1,

that avoids the evaluation of the Lipschitz constant L. Taking into account that m3 = 0 and M3 = p(p−1)(p−2)(b−

a)p−3, we also have

5(b − a)4

36864
(2M3 − m3) ≤

p(p − 1)(p − 2)
3686

(b − a)p+1.

Now, given that 3 ≤ p < 4, we obtain

1
3686

≪
1

512
≤

1
384

(
3
4

)p−3

≤
1

384
,

which shows that the term
5(b − a)4

36864
(2M3 − m3) is negligible compared to the term

(
3
4

)p−3 p(p − 1)(p − 2)
384

(b −

a)p+1.
3. Interestingly, error estimate (43) can also be compared to the optimized result obtained in [24,25] for a third-order

differentiable function on [a, b]. There, it is proved that, for another numerical integration rule, we have⏐⏐⏐⏐∫ b

a
f (x) dx −

b − a
2

(f (a) + f (b)) +
(b − a)2

12
(f ′(b) − f ′(a))

⏐⏐⏐⏐ ≤
(b − a)4

384
(M3 − m3) . (53)

To be able to compare (53) to our result, we assume that, roughly speaking, Lipschitz constant L can be approximated

by L ≃
M3 − m3

b − a
. Hence, error bound (43) can be written

(M3 − m3) (b − a)4

512
+

5(b − a)4

36864
(2M3 − m3).

Consequently, the first term appears to be much greater than second one. Hence, in that case, the error bound can
be approximated by

(b − a)4

512
(M3 − m3) , (54)

and (54) is 1.33 times smaller than (53). However, the ‘‘price to pay’’ in the quadrature formula (41) is the

computation of f ′′ at the points a,
a + b
2

and b, compared with f ′ at the points a and b in formula (53).

. Conclusion

In this paper we proposed a new second-order Taylor-like theorem to obtain some minimized remainders. For a
unction f defined on the interval [a, b], this formula is derived by introducing a linear combination of the derivative
′ computed at n+ 1 equally spaced points in [a, b], together with the second-order derivatives f ′′ computed at the limit
oints a and b.
We proved that the corresponding remainder can be minimized for an ad hoc choice of the weights involved in

his linear combination, and can be significantly smaller than the one obtained with the classical second order Taylor’s
ormula.Then, we considered two usual applications of this Taylor-like expansion: the interpolation error and the
umerical quadrature formula. We showed that using this approach improves both the Lagrange P2- interpolation error
stimate and the error bound of the Simpson rule in numerical integration.For the interpolation error, we showed that
he upper bound of the errors we obtained is almost two times more precise than the one obtained by the classical Taylor
ormula. For the numerical integration, dealing with functions with only C3 regularity, the new quadrature error based on
aylor-like formula was found to be bounded 1.33 times less than the best one derived for another numerical integration
16
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rule.Other applications could also be concerned by this new second order Taylor-like formula. For instance, we could
consider to improve the approximation error involved in ODE’s approximation where Taylor’s formula is the main tool
used to derive numerical schemes.
Homages: The authors want to warmly dedicate this research to pay homage to the memory of Professors André Avez
nd Gérard Tronel who largely promote the passion of research and teaching in mathematics of their students.
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