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Abstract: This paper is devoted to a new first order Taylor-like formula, where the corresponding
remainder is strongly reduced in comparison with the usual one, which appears in the classical
Taylor’s formula. To derive this new formula, we introduce a linear combination of the first derivative
of the concerned function, which is computed at n + 1 equally spaced points between the two points,
where the function has to be evaluated. We show that an optimal choice of the weights in the linear
combination leads to minimizing the corresponding remainder. Then, we analyze the Lagrange P1-
interpolation error estimate and the trapezoidal quadrature error, in order to assess the gain of the
accuracy we obtain using this new Taylor-like formula.

Keywords: Taylor’s theorem; Lagrange interpolation; interpolation error; quadrature trapezoid and
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1. Introduction

Rolle’s theorem, and therefore, Lagrange and Taylor’s theorems, prevent one from
precisely determining the error estimate of numerical methods applied to partial differential
equations. Basically, this stems from the existence of a non-unique unknown point, which
appears in the remainder of Taylor’s expansion, as a heritage of Rolle’s theorem.

This is the reason why, in the context of finite elements, only asymptotic behaviors are
generally considered for the error estimates, which strongly depend on the interpolation
error (see, for example, [1] or [2]).

Owing to this lack of information, several heuristic approaches have been considered,
so as to investigate new possibilities, which rely on a probabilistic approach. Such new
possibilities enable one to classify numerical methods in which the associated data are fixed
and not asymptotic (for a review, see [2,3]) .

However, an unavoidable fact is that Taylor’s formula introduces an unknown point.
This leads to the inability to exactly determine the interpolation error and, consequently,
the approximation error of a given numerical method. It is thus legitimate to ask if the
corresponding errors are bounded by quantities, which are as small as possible.

Here, we focus on the values of the numerical constants that appear in these estimations
to minimize them as much as possible.

For example, let us consider the two-dimensional case and the P1-Lagrange interpolation
error of a given C2 function, defined on a given triangle.

One can show that the numerical constant, which naturally appears in the corresponding
interpolation error estimate [4], is equal to 1/2, as a heritage of the remainder of the
first-order Taylor expansion.

Hence, in this paper, we propose a new first-order Taylor-like formula, in which we
strongly modify the repartition of the numerical weights between the Taylor polynomial
and the corresponding remainder.

To this end, we introduce a sequence of (n + 1) equally spaced points and consider a
linear combination of the first derivative at these points. We show that an optimal choice of
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the coefficients in this linear combination leads to minimizing the corresponding remainder.
Indeed, the bound of the absolute value of the new remainder becomes 2n smaller than the
classical one obtained by the standard Taylor formula.

As a consequence, we show that the bounds of the Lagrange P1-interpolation error
estimate, as well as the bound of the absolute quadrature error of the trapezoidal rule,
are two times smaller than the usual ones obtained using the standard Taylor formula,
provided we restrict ourselves to the new Taylor-like formula when n = 1, namely, with
two points.

The paper is organized as follows. In Section 2, we present the main result of this
paper, the new first-order Taylor-like formula. In Section 3.1, we show the consequences
we derived for the approximation error devoted to interpolation and, in Section 3.2, to
numerical quadratures. Finally, in Section 4, we provide concluding remarks.

2. The New First-Order, Taylor-like Theorem

Let us first recall the well-known first-order Taylor formula [5] or [6].
Let (a, b) ∈ R2, a < b, and f ∈ C2([a, b]). Then, there exists (m2, M2) ∈ R2 such that

∀x ∈ [a, b] : m2 6 f ′′(x) 6 M2 , (1)

and we have
f (b) = f (a) + (b− a) f ′(a) + (b− a)εa,1(b), (2)

where
lim
b→a

εa,1(b) = 0,

and
(b− a)

2
m2 6 εa,1(b) 6

(b− a)
2

M2. (3)

In order to derive the main result below, we introduce the function φ defined by

φ : [0, 1] −→ R
t 7−→ f ′(a + t(b− a)).

Then, we remark that φ(0) = f ′(a), and φ(1) = f ′(b). Moreover, the remainder εa,1(b)
in (2) satisfies the following result.

Proposition 1. The function εa,1(b) in the remainder (2) can be written as follows:

εa,1(b) =
∫ 1

0
(1− t)φ′(t)dt. (4)

Proof. Taylor’s formula with the remainder in the integral form gives, at the first order,

f (b) = f (a) + (b− a) f ′(a) +
1
1!

∫ b

a
(b− x) f ′′(x)dx, (5)

and using the substitution x = a + (b− a)t in the integral of (5), we obtain

f (b) = f (a) + (b− a) f ′(a) + (b− a)
∫ 1

0
(1− t)(b− a) f ′′(a + (b− a)t)dt,

where
φ′(t) = (b− a) f ′′(a + (b− a)t).

Finally,

εa,1(b) =
∫ 1

0
(1− t)φ′(t)dt.
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Now, let n ∈ N∗. We define εa,n+1(b) by the formula below

f (b) = f (a) + (b− a)

(
n

∑
k=0

ωk(n) f ′
(

a + k
(b− a)

n

))
+ (b− a)εa,n+1(b), (6)

where the sequence of the real weights
(

ωk(n)
)

k∈[0,n]
will be determined such that the

corresponding remainder built on εa,n+1(b) will be as small as possible.
In other words, we will prove the following result.

Theorem 1. Let f be a real mapping defined on [a, b], which belongs to C2([a, b]), such that
∀x ∈ [a, b],−∞ < m2 6 f ′′(x) 6 M2 < +∞.

If the weights ωk(n), with (k = 0, n), satisfy

n

∑
k=0

ωk(n) = 1,

then we have the following first order expansion

f (b) = f (a) + (b− a)

(
f ′(b) + f ′(a)

2n
+

1
n

n−1

∑
k=1

f ′
(

a + k
(b− a)

n

))
+ (b− a)εa,n+1(b), (7)

where

lim
b→a

εa,n+1(b) = 0 and |εa,n+1(b)| 6
(b− a)

8n
(M2 −m2). (8)

Moreover, this result is optimal, since the weights involved in (7) guarantee that the remainder

εa,n+1(b) is minimum for the set of equally-spaced points xk = a + k
(b− a)

n
in [a, b], which is

considered in the expansion (7).

Remark 1. Formula (7) can be derived by using the composite trapezoidal quadrature rule (see, for
example, [7]) by integrating a given function f ′ on the interval [a, b]. However, in this way, the
corresponding quadrature error does not trivially appear as the minimum. This is the purpose of
Theorem 1.

Remark 2. To compare the control of εa,n+1(b) given by (8) and those of εa,1(b) given by (3), we
remark that (8) implies that

|εa,n+1(b)| 6
(b− a)

4n
max(|m2|, |M2|). (9)

Consequently, the bound of the absolute value of the remainder εa,n+1(b) is 2n smaller than those
derived with εa,1(b).

Remark 3. We also notice in Theorem 1 that between the parentheses lies a Riemann sum where, if
n tends to infinity, we obtain the classical formula of integral calculus. That is to say,

f (b) = f (a) + (b− a)
∫ 1

0
f ′(bt + (1− t)a)dt.

In order to prove Theorem 1, we will need the following lemma.
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Lemma 1. Let u be any continuous function on R, and a sequence of real numbers (ak)06k6n ∈
Rn+1, (n ∈ N∗). Thus, we have the following formula:

n−1

∑
k=0

∫ n

k
aku(t)dt =

n−1

∑
k=0

∫ k+1

k
Sku(t)dt, (10)

where

Sk =
k

∑
j=0

aj.

Proof. We set An =
n−1

∑
k=0

∫ n

k
ak u(t) dt, and Bn =

n−1

∑
k=0

∫ k+1

k
Sku(t) dt, where Sk =

k

∑
j=0

aj.

We will prove, by induction on n, that An = Bn for all n ∈ N∗.
If n = 1, we have

A1 =
0

∑
k=0

∫ 1

k
aku(t)dt =

∫ 1

0
a0u(t)dt,

and

B1 =
0

∑
k=0

∫ k+1

k
Sku(t)dt =

∫ 1

0
S0u(t)dt =

∫ 1

0
a0u(t)dt.

So, A1 = B1.
Let us now assume that An = Bn, and let us show that An+1 = Bn+1.
We have

Bn+1 =
n

∑
k=0

∫ k+1

k
Sku(t)dt =

n−1

∑
k=0

∫ k+1

k
Sku(t)dt +

∫ n+1

n
Snu(t)dt = Bn +

∫ n+1

n
Snu(t)dt,

= An +
∫ n+1

n
Snu(t)dt =

n−1

∑
k=0

∫ n

k
aku(t)dt +

∫ n+1

n
Snu(t)dt,

=
n

∑
k=0

∫ n

k
aku(t)dt +

∫ n+1

n

(
n

∑
j=0

aj

)
u(t)dt =

n

∑
k=0

∫ n

k
aku(t)dt +

n

∑
k=0

∫ n+1

n
aku(t)dt,

=
n

∑
k=0

(∫ n

k
aku(t)dt +

∫ n+1

n
aku(t)dt

)
=

n

∑
k=0

∫ n+1

k
aku(t)dt = An+1.

We conclude:

∀n ∈ N∗ :
n−1

∑
k=0

∫ n

k
aku(t)dt =

n−1

∑
k=0

∫ k+1

k
Sku(t)dt,

where

Sk =
k

∑
j=0

aj. (11)

Let us now prove Theorem 1.

Proof. We have

f (b)− f (a)
b− a

= φ(0) + εa,1(b) =
n

∑
k=0

ωk(n)φ
(

k
n

)
+ εa,n+1(b),
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which can be re-written as

εa,n+1(b) = φ(0) + εa,1(b)−
n

∑
k=0

ωk(n)φ
(

k
n

)
,

= φ(0) +
∫ 1

0
(1− t)φ′(t)dt−

n

∑
k=0

ωk(n)φ
(

k
n

)
,

= φ(1)−
∫ 1

0
tφ′(t)dt−

n

∑
k=0

ωk(n)φ
(

k
n

)
,

= φ(1)−
∫ 1

0
tφ′(t)dt +

n

∑
k=0

ωk(n)
(

φ(1)− φ

(
k
n

))
−

n

∑
k=0

ωk(n)φ(1),

=

(
1−

n

∑
k=0

ωk(n)

)
φ(1)−

∫ 1

0
tφ′(t)dt +

n

∑
k=0

ωk(n)
(

φ(1)− φ

(
k
n

))
. (12)

However, given that
n

∑
k=0

ωk(n) = 1, (13)

Equation (12) becomes

εa,n+1(b) = −
∫ 1

0
tφ′(t)dt +

n

∑
k=0

ωk(n)
(

φ(1)− φ

(
k
n

))
,

= −
∫ 1

0
tφ′(t)dt +

n

∑
k=0

ωk(n)
∫ 1

k
n

φ′(t)dt,

= −
n−1

∑
k=0

∫ k+1
n

k
n

tφ′(t)dt +
n

∑
k=0

ωk(n)
∫ 1

k
n

φ′(t)dt,

= −
n−1

∑
k=0

∫ k+1
n

k
n

tφ′(t)dt +
n−1

∑
k=0

∫ 1

k
n

ωk(n)φ′(t)dt. (14)

Let us now use Lemma 1 in (14) by setting in (10),

u(t) = φ′
(

t
n

)
, ak = ωk(n), and Sk =

k

∑
j=0

ωj(n) = Sk(n).

Thus, we obtain, using (10),

n−1

∑
k=0

∫ n

k
ωk(n)φ′

(
t
n

)
dt =

n−1

∑
k=0

∫ k+1

k
Sk(n)φ′

(
t
n

)
dt,

which can be written, by a simple substitution, as

n−1

∑
k=0

∫ 1

k
n

ωk(n)φ′(t)dt =
n−1

∑
k=0

∫ k+1
n

k
n

Sk(n)φ′(t)dt. (15)

Then, (14) gives

εa,n+1(b) = −
n−1

∑
k=0

∫ k+1
n

k
n

tφ′(t)dt +
n−1

∑
k=0

∫ k+1
n

k
n

Sk(n)φ′(t)dt =
n−1

∑
k=0

∫ k+1
n

k
n

(Sk(n)− t)φ′(t)dt. (16)
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Moreover,

∀x ∈ [0, 1] : φ′(x) = (b− a) f ′′(a + x(b− a)), and, ∀t ∈ [a, b] : m2 6 f ′′(t) 6 M2.

Next, to derive a double inequality on εa,n+1(b), we split the last integral in (16) as follows:

∫ k+1
n

k
n

(Sk(n)− t)φ′(t)dt =
∫ Sk(n)

k
n

(Sk(n)− t)φ′(t)dt +
∫ k+1

n

Sk(n)
(Sk(n)− t)φ′(t)dt. (17)

Then, considering the constant sign of (Sk(n)− t) on
[

k
n

, Sk(n)
]

, and on
[

Sk(n),
k + 1

n

]
,

we have

(b− a)m2

∫ Sk(n)

k
n

(Sk(n)−t)dt ≤
∫ Sk(n)

k
n

(Sk(n)−t)φ′(t)dt ≤ (b− a)M2

∫ Sk(n)

k
n

(Sk(n)−t)dt, (18)

and

(b− a)M2

∫ k+1
n

Sk(n)
(Sk(n)−t)dt ≤

∫ k+1
n

Sk(n)
(Sk(n)−t)φ′(t)dt ≤ (b− a)m2

∫ k+1
n

Sk(n)
(Sk(n)−t)dt. (19)

Thus, (18) and (19) enable us to obtain the following two inequalities

∫ k+1
n

k
n

(Sk(n)−t)φ′(t)dt ≤ (b− a)M2

∫ Sk(n)

k
n

(Sk(n)−t)dt + (b− a)m2

∫ k+1
n

Sk(n)
(Sk(n)−t)dt, (20)

and,

∫ k+1
n

k
n

(Sk(n)−t)φ′(t)dt ≥ (b− a)m2

∫ Sk(n)

k
n

(Sk(n)−t)dt + (b− a)M2

∫ k+1
n

Sk(n)
(Sk(n)−t)dt. (21)

Since we also have the following results

∫ Sk(n)

k
n

(Sk(n)− t)dt =
λ2

2n2 and
∫ k+1

n

Sk(n)
(Sk(n)− t)dt = − (λ− 1)2

2n2 , (22)

where we set
λ ≡ nSk(n)− k, (23)

inequalities (20) and (21) lead to

(b− a)
2n2 P1(λ) ≤

∫ k+1
n

k
n

(Sk(n)− t)φ′(t)dt ≤ (b− a)
2n2 P2(λ), (24)

where we defined the two polynomials P1(λ) and P2(λ) by

P1(λ) ≡ m2λ2 − (λ− 1)2M2 and P2(λ) ≡ M2λ2 − (λ− 1)2m2. (25)

Keeping in mind that we want to minimize εa,n+1(b), let us determine the value of λ such
that the polynomial P(λ) ≡ P2(λ)− P1(λ) is minimum.
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To this end, let us remark that P(λ) = (M2 −m2)(2λ2 − 2λ + 1) is minimum when λ =
1
2

.
Then, for this value of λ, (24) becomes

(b− a)
8n2 (m2 −M2) ≤

∫ k+1
n

k
n

(Sk(n)− t)φ′(t)dt ≤ (b− a)
8n2 (M2 −m2), (26)

and finally, by summing on k between 0 and n− 1, we have

(b− a)
8n

(m2 −M2) 6 εa,n+1(b) 6
(b− a)

8n
(M2 −m2). (27)

Due to the definitions (11) of Sk(n) and (23) of λ, on the one hand, and because, on the
other hand, the weights ωk(n), with (k = 0, n), satisfy (13), we have

∀n ∈ N∗, ∀k ∈ [0, n[: Sk(n) =
k

∑
j=0

ωj(n) =
1

2n
+

k
n

. (28)

So, for k = 0, (28) gives ω0(n) =
1

2n
, and for k = 1,

ω0(n) + ω1(n) =
1

2n
+

1
n

,

which implies that ω1(n) =
1
n

.

Then, step by step, the corresponding ωk(n) weights are equal to

ω0(n) = ωn(n) =
1

2n
, and ωk(n) =

1
n

, 0 < k < n,

which completes the proof for Theorem 1.

As an example, let us write Formula (7) when n = 2 (i.e., with three points). In this case,
we have

f (b) = f (a) + (b− a)

 f ′(a) + 2 f ′
(

a + b
2

)
+ f ′(b)

4

+ (b− a)εa,3(b), (29)

where
(b− a)

16
(m2 −M2) 6 εa,3(b) 6

(b− a)
16

(M2 −m2).

For example, if we set a = 0, b = 1 and f (x) = ln(1 + x), Formula (29) gives

ln(2) = ln(1) +
1
4

[
1 + 2.

2
3
+

1
2

]
+ ε =

17
24

+ ε, (30)

and
|ε| ≤ 1

8
.

With the same data, the first Taylor’s formula leads to

ln(2) = ln(1) +
1

1 + 0
+ ε′ = 1 + ε′,

and
|ε′| ≤ 1

2
.
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So, we notice that formula (29) leads to an accurate approximation of ln(2), since (30)
implies that

ln(2) ' 17
24
' 0.708

while the well-known approximation of ln(2) is given by ln(2) = 0.693.

Remark 4. Condition (13) on the weights ωk(n), with (k = 0, n), in Theorem 1 is a kind of closure
condition, since it helps determine wn(n), but it is not a restrictive one.

Indeed, without the closure condition (13), one would have to consider the following expression
of εa,n+1(b) instead of (16)

εa,n+1(b) =
n−1

∑
k=0

∫ k+1
n

k
n

(Sk(n)− t)φ′(t)dt +

(
1−

n

∑
k=0

ωk(n)

)
φ(1). (31)

Then, (27) would be replaced by

(b− a)
8n

(m2 −M2)−
M1

2n
6 εa,n+1(b) 6

(b− a)
8n

(M2 −m2)−
m1

2n
, (32)

where we assume that (m1, M1) ∈ R2 are such that ∀x ∈ [a, b],−∞ < m1 6 f ′(x) 6 M1 < +∞.
Moreover, to obtain (32), we also used the fact that the weights ωk(n), with (k = 0, n), may

be found with the help of (28) without using the closure condition (13).
More precisely, in this case, one can find that the weights ωk(n), with (k = 0, n), are equal to

ω0(n) =
1

2n
, and ωk(n) =

1
n

, ∀ 0 < k ≤ n. (33)

Consequently, from (32), we obtain that the bound of the absolute value of the remainder εa,n+1(b)
is n times smaller that those of the first-order Taylor formula given by (2) and (3).

So, by considering the closure condition (13) and the corresponding weights ωk(n), with
(k = 0, n), we slightly improved the result of (32), since the bound of the absolute value of the
remainder given by (16) is 2n smaller than those of the first Taylor formula.

Finally, we also observe that formula (7) can be directly obtained from the Composite Trapezoidal
Rule applied to

∫ b
a f ′(x)dx taking n subintervals. In addition, we show that the corresponding

remainder is minimized.

3. Application to the Approximation Error

To give added value to Theorem 1, which was presented in the previous section, this
section is devoted to appreciating the resulting differences one can observe in two main
applications, which belong to the field of numerical analysis. The first one concerns the
Lagrange polynomial interpolation and the second, the numerical quadrature. In these
two cases, we will evaluate the corresponding approximation error both with the help of
the standard first-order Taylor formula and using the generalized Formula (7) derived in
Theorem 1.

3.1. The Interpolation Error

In this subsection, we consider the first application of the generalized Taylor-like
expansion (7) when n = 1. In this case, for any function f , which belongs to C2([a, b]),
Formula (7) can be written

f (b) = f (a) + (b− a)
(

f ′(a) + f ′(b)
2

)
+ (b− a)εa,2(b), (34)



Axioms 2022, 11, 562 9 of 16

where εa,2(b) satisfies

(b− a)
8

(m2 −M2) 6 εa,2(b) 6
(b− a)

8
(M2 −m2). (35)

As a first application of Formulas (34) and (35), we will consider the particular case of the
P1-Lagrange interpolation (see [8] or [9]), which consists in interpolating a given function f
on [a, b] by a polynomial Π[a,b]( f ) of degree less than or equal to one.

Then, the corresponding polynomial of interpolation Π[a,b]( f ) is given by

∀x ∈ [a, b] : Π[a,b]( f )(x) =
x− b
a− b

f (a) +
x− a
b− a

f (b). (36)

One can remark that, using (36), we have Π[a,b]( f )(a) = f (a), and Π[a,b]( f )(b) = f (b).
Our purpose now is to investigate the consequences of Formula (34) when one uses it

to evaluate the error of interpolation e(.), defined by

∀x ∈ [a, b] : e(x) = Π[a,b]( f )(x)− f (x),

and to compare it with the classical first-order Taylor formula given by (2).
The standard results [7] regarding the P1−Lagrange interpolation error claim that for

any function f , which belongs to C2[a, b], we have

|e(x)| ≤ (b− a)2

2
sup

a≤x≤b
| f ′′(x)|. (37)

This result is usually derived by considering the suitable function g(t) defined on [a, b] by

g(t) = f (t)−Π[a,b]( f )(t)−
(

f (t)−Π[a,b]( f )(t)
)

(t− a)(t− b)
(x− a)(x− b)

, (x ∈]a, b[). (38)

Given that g(a) = g(b) = g(x) = 0, and by applying Rolle’s theorem twice, one can deduce
that there exists ξx ∈]a, b[ such that g′′(ξx) = 0.

Therefore, after some calculations, one obtains the following

f (x)−Π[a,b]( f )(x) =
1
2
(x− a)(x− b) f ′′(ξx), (a < ξx < b), (39)

and (37) simply follows.
Still, as one can see from (39), estimation (37) can be improved since

sup
a≤x≤b

(x− a)(b− x) =
(b− a)2

4
. (40)

Then, (39) leads to

|e(x)| ≤ (b− a)2

8
sup

a≤x≤b
| f ′′(x)|, (41)

in the place of (37).
However, to appreciate the difference between the classical Taylor formula and the

new one in (34), we will now reformulate the proof of (41) by using the classical Taylor
Formula (2). This is the purpose of the following lemma.

Lemma 2. Let f be a function, which belongs to C2([a, b]), satisfying (1); then, the first-order
Taylor theorem leads to the following interpolation error estimate

|e(x)| ≤ (b− a)2

8
M, (42)
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where M = max{|m2|, |M2|}.

Proof. We begin by writing the Lagrange P1−polynomial Π[a,b]( f ) given by (36) with the
help of the classical first-order Taylor Formula (2).

Indeed, in (36), we substitute f (a) and f (b) by

f (a) = f (x) + (a− x) f ′(x) + (a− x)εx,1(a), (∀x ∈ [a, b]), (43)

f (b) = f (x) + (b− x) f ′(x) + (b− x)εx,1(b), (∀x ∈ [a, b]), (44)

where, by the help of (3) and (1), εx,1(a) and εx,1(b) satisfy

|εx,1(a)| ≤ (x− a)
2

M and |εx,1(b)| ≤
(b− x)

2
M. (45)

Then, (36) gives

Π[a,b]( f )(x) = f (x) +
(x− a)(b− x)

(b− a)
[εx,1(b)− εx,1(a)], (46)

and due to (45), we obtain

|Π[a,b]( f )(x)− f (x)| ≤ (x− a)(b− x)
2

M, (47)

where we used the fact that |εx,1(b)− εx,1(a)| ≤ (b− a)
2

M.
Finally, due to (40), (47) leads to (42).

Let us now derive the corresponding result when one uses the new first-order Taylor-like
Formula (34) in the expression of the interpolation polynomial Π[a,b]( f ) defined by (36).

This is the purpose of the following lemma.

Lemma 3. Let f ∈ C2([a, b]); then, we have the following interpolation error estimate, for all
x ∈ [a, b]:∣∣∣∣ f (x)−

[
Π[a,b]( f )(x)−

(
f ′(b)− f ′(a)

2(b− a)

)
(b− x)(x− a)

]∣∣∣∣ ≤ (b− a)2

32
(M2 −m2). (48)

Proof. We begin by writing f (a) and f (b) by the help of (34)

f (a) = f (x) + (a− x)
[

f ′(x) + f ′(a)
2

]
+ (a− x)εx,2(a), (49)

f (b) = f (x) + (b− x)
[

f ′(x) + f ′(b)
2

]
+ (b− x)εx,2(b), (50)

where εx,2 satisfies (35), with obvious changes in notations. Namely, we have

|εx,2(a)| ≤ (x− a)
8

(M2 −m2) and |εx,2(b)| ≤
(b− x)

8
(M2 −m2). (51)

Then, by substituting f (a) and f (b) in the interpolation polynomial given by (36), we have

Π[a,b]( f )(x)= f (x) +
(

f ′(b)− f ′(a)
2(b− a)

)
(b−x)(x−a) +

(b−x)(x−a)
(b− a)

[
εx,2(b)−εx,2(a)

]
. (52)
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Now, if we define the refined interpolation polynomial Π∗[a,b]( f ) by

∀x ∈ [a, b] : Π∗[a,b]( f )(x) = Π[a,b]( f )(x)−
(

f ′(b)− f ′(a)
2(b− a)

)
(b− x)(x− a), (53)

Equation (52) becomes

Π∗[a,b]( f )(x) = f (x) +
(b− x)(x− a)

(b− a)

[
εx,2(b)− εx,2(a)

]
. (54)

Thus, due to (51), we have |εx,2(a)− εx,2(b)| ≤
(b− a)

8
(M2 −m2), and (52) with the help

of (53) gives

|Π∗[a,b]( f )(x)− f (x)| ≤ (b− x)(x− a)
8

(M2 −m2) ≤
(b− a)2

32
(M2 −m2), (55)

which completes the proof of this lemma.

Let us now formulate a couple of the consequences of Lemmas 2 and 3.

1. If we consider the refined interpolation polynomial Π∗[a,b]( f ) defined by (53), we
obtain an accuracy for the error estimate (48), which is two times more precise than
what we obtained in (42) using the classical Taylor formula.
In order to compare (42) and (48), we notice that (48) leads to

∀x ∈ [a, b] : |e∗(x)| ≤ (b− a)2

16
max(|m2|, |M2|). (56)

Now, the cost for this improvement is that Π∗[a,b]( f ) is a polynomial of degree less
than or equal to two, which requires the computation of f ′(a) and f ′(b). However,
the consequent gain clearly appears in the following application devoted to finite
elements.
To this end, we consider a Hilbert space V endowed with a norm ‖.‖V and a bilinear,
continuous, and V−elliptic form a(·, ·) defined on V ×V.
In particular, ∃ (α, C) ∈ R∗+ ×R∗+ such that:

∀v ∈ V, α‖v‖2
V ≤ a(v, v) ≤ C‖v‖2

V . (57)

Moreover, we denote by l(·) a linear continuous form defined on V.
So, let u ∈ V be the unique solution to the second order elliptic variational formulation
(VP) defined by:

(VP)

 Find u ∈ V solution to:

a(u, v) = l(v), ∀v ∈ V.
(58)

Let us also introduce the approximation uh of u, the solution to the approximate
variational formulation (VP)h defined by:

(VP)h

 Find uh ∈ Vh solution to:

a(uh, vh) = L(vh), ∀vh ∈ Vh,
(59)

where Vh is a given linear subspace of V, whose dimension is finite.
Then, we are in position to recall Céa’s Lemma, which can be found in [1], for example:
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Lemma 4. Let u be solution to (58) and uh be the solution of (59). Then, the following
inequality holds:

‖u− uh‖V ≤
C
α

inf
vh∈Vh

‖u− vh‖V , (60)

where the constant C and α are the continuity constant and the ellipticity constant, respectively,
of the bilinear form a(·, ·) defined in (57).

So, due to Céa’s lemma, (60) leads to

‖u− uh‖V ≤
C
α
‖u−Πh(u)‖V , (61)

for any interpolate polynomial Πh(u) in Vh of the function u. Thus, inequality (61)
shows that the approximation error is bounded by the interpolation error.
Therefore, if one wants to locally guarantee that the upper bound of the interpolation
error is not greater than a given threshold ε, then if h denotes the local mesh size of a
given mesh, by setting h = b− a, inequalities (42) and (56) lead to

M
8

h2 ≤ ε and
M
16

h2 ≤ ε. (62)

It follows that the difference between the interpolation based on Π[a,b]( f ) or Π∗[a,b]( f )

is 1/
√

2 ' 0.707, and consequently, the gain is around 30 percent with the refined
interpolation polynomial Π∗[a,b]( f ). This economy in terms of the total number of
meshes would be even more significant if one considers the extension of this case to a
three-dimensional application.

2. We also notice that, if we now consider the particular class of C2−functions f defined
on R, (b− a)-periodic, then f ′(a) = f ′(b), and consequently, the interpolation error
e∗(x) is equal to e(x), and (48) becomes

∀x ∈ [a, b] : |e∗(x)| = |e(x)| ≤ (b− a)2

32
(M2 −m2) ≤

(b− a)2

16
M. (63)

In other words, for this class of periodic functions, due to the new first order Taylor-like
formula (34), the interpolation error e(x) provided by (63) is bound by a quantity that
is two times smaller that those we obtained in (42) using the classical Taylor formula.
We highlight that, in this case, there is no cost anymore to obtain this more accurate
result, since it concerns the standard interpolation error associated with the standard
Lagrange P1-polynomial.

3. Finally, since the refined polynomial Π∗[a,b]( f ) has a degree less than or equal to two,
one would want to compare it with the performance of the corresponding Lagrange
polynomial with the same degree.
In order to process it, we must assume that f belongs to C3([a, b]); then, in [7], we
find that the interpolation error eT(x) for a Lagrange polynomial whose degree is less
than or equal to two is given by

∀x ∈ [a, b] : |eT(x)| ≤ (b− a)3

24
M3, (64)

where M3 = sup
a≤x≤b

| f ′′′(x)|.

Consequently, by comparing (64) and (56), provided the given function f is sufficiently
smooth, (namely in C3([a, b])), one would prefer to use the Lagrange polynomial of a
degree less than or equal to two, which leads to a more accurate interpolation error.
However, for a function f , which only belongs to C2([a, b]), no result is available for
this Lagrange polynomial, and the comparison is not valid anymore.
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3.2. The Quadrature Error

We now consider, for any integrable function f defined on [a, b], the famous trapezoidal
quadrature [7] or [10], the formula of which is given by

∫ b

a
f (x)dx ' b− a

2
( f (a) + f (b)). (65)

We consider (65) due to the fact that this quadrature formula corresponds to approximating
the function f by its Lagrange polynomial interpolation Π[a,b]( f ), of degree less than or
equal to one, which is given by (36).

In the literature on numerical integration, (see, for example, [7] and [11] or [12]), the
following estimation is well known as the trapezoid inequality∣∣∣∣∫ b

a
f (x) dx− (b− a)

f (a) + f (b)
2

∣∣∣∣ ≤ (b− a)3

12
sup

a≤x≤b
| f ′′(x)|, (66)

for any function f twice differentiable on [a, b], the second derivative of which is accordingly
bounded on [a, b].

It is also well known [13] that if f is only C1 on [a, b], one has the following estimation∣∣∣∣∫ b

a
f (x) dx− (b− a)

f (a) + f (b)
2

∣∣∣∣ ≤ (b− a)2

8
(M1 −m1), (67)

where ∀x ∈ [a, b] : −∞ < m1 ≤ f ′(x) ≤ M1 < +∞.
Now, we prove a lemma that will propose estimation (66) in an alternate display. It

will also extend estimation (67) to twice differentiable functions f that satisfy (1).

Lemma 5. Let f be a twice differentiable mapping on [a, b], which satisfies (1).
Then, we have the following estimation∣∣∣∣∫ b

a
f (x) dx− (b− a)

f (a) + f (b)
2

∣∣∣∣ ≤ (b− a)3

24
(M2 −m2). (68)

Proof. In order to derive estimation (68), we recall that the classical first-order Taylor
Formula (2) enables us to write the polynomial Π[a,b]( f ) by (46). Then, by integrating (46)
between a and b, we obtain∫ b

a

(
f (x) dx−Π[a,b]( f )(x)

)
dx =

∫ b

a

[
(x− a)(b− x)

b− a
(εx,1(a)− εx,1(b))

]
dx. (69)

However, one can easily show that the P1-Lagrange interpolation polynomial Π[a,b]( f )
given by (36) also fulfills

∫ b

a
Π[a,b]( f )(x) dx =

(b− a)
2

( f (a) + f (b)). (70)

Now, if we introduce the well-known quantity E( f ), which is called the quadrature error,
defined by

E( f ) ≡
∫ b

a
f (x)dx− (b− a)

2
( f (a) + f (b)), (71)

Equations (69) and (70) lead to the two following inequalities

E( f ) ≥ 1
2(b− a)

∫ b

a
(x− a)(b− x)

[
m2(x− a)−M2(b− x)

]
dx, (72)
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and

E( f ) ≤ 1
2(b− a)

∫ b

a
(x− a)(b− x)

[
M2(x− a)−m2(b− x)

]
dx, (73)

where we used inequality (3) for εx,1(a) and εx,1(b), with obvious adaptations.
One can now observe that in (72) and (73), the two integrals I and J defined by

I =
∫ b

a
(b− x)(x− a)2 dx and J =

∫ b

a
(x− a)(b− x)2 dx (74)

can be computed as follows.

Let us consider in (74) the substitution x =
a + b

2
+

(b− a)
2

t; then, we obtain

I =
(

b− a
2

)4 ∫ 1

−1
(1− t)(1 + t)2 dx =

(b− a)4

12
, (75)

and

J =
(

b− a
2

)4 ∫ 1

−1
(1 + t)(1− t)2 dx =

(b− a)4

12
. (76)

Finally, to obtain an upper bound for |E( f )|, owing to (72), (73), (75), and (76), we obtain

|E( f )| =
∣∣∣∣∫ b

a
f (x)dx− (b− a)

2
( f (a) + f (b))

∣∣∣∣ ≤ (b− a)3

24
(M2 −m2). (77)

Now, we consider the expression of the polynomial interpolation Π[a,b]( f )(x) to
transform it with the help of the new first-order Taylor-like Formula (34). This will enable
us to obtain the following lemma devoted to the corrected trapezoid formula according to
Atkinson’s terminology [14].

Lemma 6. Let f be a twice differentiable mapping on [a, b], which satisfies (1).
Then, we have the following corrected trapezoidal estimation∣∣∣∣∫ b

a
f (x) dx− (b− a)

f (a) + f (b)
2

+
(b− a)2( f ′(b)− f ′(a))

12

∣∣∣∣ ≤ (b− a)3

48
(M2 −m2). (78)

Proof. We consider the expression we obtained in (52) for the polynomial interpolation
Π[a,b]( f )(x), and we integrate it between a and b to obtain

∫ b

a

[
f (x)−Π[a,b]( f )(x)

]
dx +

(b−a)2( f ′(b)− f ′(a))
12

=
∫ b

a

(b−x)(x−a)(εx,2(a)−εx,2(b))
b−a

dx, (79)

where we used the following result obtained by the same substitution that we used to
compute the integrals in (74)

∫ b

a
(b− x)(x− a) dx =

(b− a)3

6
.

Then, due to (51), we also have the following inequality

|εx,2(a)− εx,2(b)| ≤
(b− a)

8
(M2 −m2), (80)

and (79) directly gives the result (78) to be proved.

We conclude this section with several remarks.
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1. We observe that the quadrature error we derived in (78) by the new first-order
Taylor-like formula is bounded two times less than those we derived in (68) with the
help of the classical Taylor’s formula.
Furthermore, Cheng and Sun proved in [15] that the best constant one can expect
in (78) is equal to 1/36

√
3 ' 1/62.35, which is slightly smaller than the 1/48 we found

in (79).
2. If we consider the particular class of C2−functions f defined on R, (b− a)-periodic,

f ′(a) = f ′(b), and the corrected trapezoid Formula (78) becomes the classical one∣∣∣∣∫ b

a
f (x) dx− (b− a)

f (a) + f (b)
2

∣∣∣∣ ≤ (b− a)3

48
(M2 −m2). (81)

In other words, we find that for this class of periodic functions, the quadrature error
of the classical trapezoid formula is two times more accurate than those we found
in (77), where the classical first-order Taylor formula was implemented.

4. Conclusions and Perspectives

In this paper, we derived a new first-order Taylor-like formula to minimize the
unknown remainder, which appears in the classical one. This new formula was composed
of a linear combination of the first derivative of a given function, computed at (n + 1)
equally spaced points on [a, b].

We also showed that the corresponding new remainder could be minimized using a
suitable choice of the set of the weights that appear in the linear combination of the first
derivative values at the corresponding points.

As a consequence, the bound of the absolute value of the new remainder was 2n
smaller than the one that appeared in the classical first-order Taylor formula.

Next, we considered two famous applicative contexts given by the numerical analysis
where the Taylor formula was used: the interpolation error and the quadrature error. Then,
we showed that one can obtain a significant improvement in the corresponding errors.
Namely, Lemma 3 and Lemma 6 proved that the upper bound of these errors was two
times smaller than the usual ones estimated by the classical Taylor formula, if one limits it
to the class of periodic functions.

Several other applications might be considered by this new first-order Taylor-like
formula, for example, the approximation error, which has to be considered in ODEs where
the Taylor formula is strongly used for the appropriate numerical schemes, or in the context
of finite elements.

For this last application, when one considers linear second elliptic PDEs, due to Cea’s
Lemma [1], the approximation error was bounded by the interpolation error. Then, the
improvement in the interpolation error that we showed in this current work, using the
interpolation polynomial defined by (53), in comparison with the standard P1-Lagrange
Polynomial, will consequently impact the accuracy of the approximation error.

Indeed, we highlighted the corresponding gain one may take into account for building
meshes, as soon as a given local threshold of accuracy is fixed for the
associated approximations.

Other developments may also be considered, e.g., a generalized high-order Taylor-like
formula, on the one hand, or its corresponding extension for functions with several
variables, on the other hand.
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