
International Forum on Aeroelasticity and Structural Dynamics
IFASD 2017

25-28 June 2017 Como, Italy

UNCERTAINTY QUANTIFICATION IN THE VICINITY OF MODE
SWITCHES IN THE FLUTTER RESPONSE OF A COMPOSITE

CANTILEVERED WING

Christian T. Nitschke1, Angela Vincenti1, Jean-Camille Chassaing1

1Sorbonne Universités, UPMC Paris 06, CNRS, UMR 7190, Institut Jean le Rond d’Alembert
4 place Jussieu, 75005 Paris, France

christian.nitschke@upmc.fr
angela.vincenti@upmc.fr

jean-camille.chassaing@upmc.fr

Keywords: aeroelasticity, uncertainty quantification, composite materials, polynomial chaos,
machine learning

Abstract: In composite wings, abrupt switches in modal behaviour occur depending on the
elastic properties of the laminate. These switches can lead to drastic drops in critical flutter
velocity. The modal behaviour is so sensitive that even small fabrication errors can cause them.
In this paper, several laminate configurations prone to mode switches are studied and the effect
of errors on angular ply placement and thickness on the aeroelastic behaviour are examined.
The polar method is used for the analysis of the stiffness properties of the materials and their
distribution. Arbitrary polynomial chaos is used to accelerate the stochastic propagation step.
The discontinuties in the response surface are treated by using machine learning.

1 INTRODUCTION

As composite materials provide highly favorable stiffness-to-weight ratios, this type of material
has gained broader adoption in aircraft manufacturing in recent years. However, in comparison
to classical aircraft materials, as for example aluminium, their stiffness is anisotropic. As stud-
ies conducted in the early 1980s in structural dynamics [1] and aeroelasticity [2] have demon-
strated, the consequences of the anisotropy are important for the modal response of structures.

As these materials consist of different plies which are assembled during a manufacturing pro-
cess, errors can occur in this assembly, which in turn alter the elastic properties of the material.
This can lead to said deviations in modal behaviour. In the case of aeroelastic problems, it also
can lead to substantial differences in the critical flutter velocity. Typical uncertainties in this
framework are errors in the ply angles as well as in the ply thicknesses [3, 4], which are the
constitutive parameters of the laminate’s stacking sequence.

Applying uncertainty quantification directly on these uncertainties means that the number of
parameters is dependent on the number of plies. In aeronautic construction, laminates with 16
or more plies are not unusual, which means that the number of uncertain constitutive param-
eters gets quickly very high (32 or more) and the interpretation of the problem is confusing.
The high number of uncertain parameters also prevents deployment of advanced uncertainty
quantification methods such as polynomial chaos or stochastic collocation [5]
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In order to solve that problem, Scarth et al. [6] used the so-called lamination parameters, which
provide a smaller set of parameters to describe the behaviour of a laminate in place of the whole
set of uncertain constitutive parameters. However, many of the lamination parameters do not
have an immediate physical meaning. Moreover, this approach is inflexible in the consideration
of ply thicknesses. This is why the polar method is considered in this paper, which was first
introduced by [7] and reformalised later by [8]. The polar method permits to take into account
uncertainty in the ply thicknesses and allows for more general laminate configurations while
keeping the number of uncertain parameters down at six even in non-symmetric cases.

Uncertainty quantification by Monte Carlo simulation has the disadvantage of a very high com-
putational cost. Polynomial chaos methods [9] have therefore gained popularity, particularly
in the aerodynamics and aeroelasticity community [10, 11, 12]. However, classical gener-
alised polynomial chaos is based on a scheme of associations of a small number of known
distributions, the so-called Wiener-Askey scheme. Moreover, it supposes that the parameters
are independent. Either of the aforementioned approaches (lamination parameters or the po-
lar method) introduces non-standard, correlated variables. This problem is solved in Scarth et
al. [6] by decorrelating the lamination parameters using a Rosenblatt decomposition. How-
ever, this requires either knowledge or approximation of the conditional cumulative density
functions, which are tedious to compute. Soize and Ghanem [13] extended the generalised
polynomial chaos approach to arbitrary distributions, which was later demonstrated by [14] to
work with correlated variables. This method was used in [15] to directly take into account the
polar parameters.

One of the major challenges in polynomial chaos is taking into account discontinuous response
surfaces, as they occur in the composite wing flutter problem due to switching of modal be-
haviour [6]. In the present work, we address this problem proposing a fully automatic procedure
for response surface splitting, which is based on machine learning and trained on a preliminary
set of samples.

In Section 2, a brief introductory summary to the polar method will be given, before present-
ing the aeroelastic problem in Section 3. In Section 4, we detail the uncertainty quantification
framework, including the steps involving machine learning which are needed to take into ac-
count mode switches and the resulting discontinuities in the response surface. In Section 5, we
first give a deterministic analysis of the critical flutter velocity for composite cantilever wings,
resulting in a response surface that highlights the occurrence of mode switches as a function
of the material. Then, based on the deterministic results, a number of laminate configurations
are selected. The chosen configurations correspond to points on the response surface which are
near the discontinuity. Uncertainty quantification on ply thicknesses and angles is subsequently
conducted on these configurations according to the method proposed in Section 4.

2 THE POLAR METHOD

Any two-dimensional symmetric positive-definite tensor can be represented by polar constants
which are given by [8]
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8T0 = Qxx − 2Qxy + 4Qss +Qyy (1)
8T1 = Qxx + 2Qxy +Qyy (2)

8R0e
ı4Φ0 = Qxx + 4ıQxs − 2Qxy − 4Qss − 4ıQys +Qyy (3)

8R1e
ı2Φ1 = Qxx + 2ıQxs + 2ıQys −Qyy (4)

With the method applied to elastic material behaviour, the modules T0 and T1 represent the
isotropic part. R0 and R1 are the modules of the anisotropic behavior, Φ0 and Φ1 being the
corresponding orientation angles, which depend on the reference frame. T0, T1, R0, R1 and the
difference between the orientation angles Φ0−Φ1 do not change under rotation of the reference
frame, which is why they are called polar invariants.

The polar constants can be transformed back into cartesian components using the following
equations [8]

Qxx = T0 + 2T1 +R0 cos(4Φ0) + 4R1 cos(2Φ1) (5)
Qxy = −T0 + 2T1 −R0 cos(4Φ0) (6)
Qxs = R0 sin(4Φ0) + 2R1 sin(2Φ1) (7)
Qyy = T0 + 2T1 +R0 cos(4Φ0)− 4R1 cos(2Φ1) (8)
Qys = −R0 sin(4Φ0) + 2R1 sin(2Φ1) (9)
Qss = T0 −R0 cos(4Φ0) (10)

Another advantage of the method consists in its representation of material symmetries, which
is linked to very simple criteria summed up in Table 1.

Elastic symmetry Polar condition
Orthotropy Φ0 − Φ1 = K π

4 ,K ∈ {0, 1}
R0-Orthotropy R0 = 0

Square Symmetry R1 = 0
Isotropy R0 = R1 = 0

Table 1: Conditions for elastic symmetries in terms of polar invariants [8]

In the isotropic case, obviously, the anisotropic moduli are zero. Orthotropic materials have a
difference between their orientation angles of multiples of π

4
. Furthermore, there are two special

cases of orthotropy, each linked to elimination of one of the anisotropic constants. The classical
case of square symmetry is linked to R1 being zero. For R0 being zero, [16] distinguishes
another special material symmetry, which he calls R0-orthotropy after its symmetry criterion.

Naturally, the values which the polar parameters can take are limited by thermodynamic con-
straints, to which geometric constraints coming from angle sequences and their distribution
along the thickness of the plate must be added in case of laminate layups [17].

In case of an orthotropic laminate with plies made of the same base material, these bounds are
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given by the equations [17]

0 ≤ R0 (11)
0 ≤ R1 (12)

R0 ≤ Rmax
0 (13)

2

(
R1

Rmax
1

)2

− 1 ≤ (−1)K−K
BM

(
R0

Rmax
0

)
(14)

Eqs. (11) - (14) thus represent the borders of the domain of existence of orthotropic laminates.
This domain is depicted in Fig. 1.

0

Rmax
1

−Rmax
0 0 Rmax

0

R
1

(−1)KR0

Figure 1: Limits of the polar domain for orthotropic laminates

3 AEROELASTIC PROBLEM

The aeroelastic model employed in this work is built after [6, 18, 19], which is a straight can-
tilevered composite plate-wing model with strip-theory flutter derivatives aerodynamics where
the number of flutter derivatives has been reduced to one. A scheme of the implied physical
wing is given in Fig. 2.
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Figure 2: Scheme of the cantilevered plate wing

The reference axis is the mid-chord span-wise axis, which coincides with the x axis in the
model. The fibre zero-angle direction is also aligned to this axis. The aerodynamic centre at
which the lift line forces are applied is at y = −ec, e being an excentricity factor which is
rendered dimensionless by the chord length. The chord is noted c, the half chord b, and the half
span S. The freestream velocity V is in the direction of the y axis. The vertical axis z is positive
downwards.

In order to produce comparable results, all simulations in this work will be carried out using the
said model with the geometric and aeromechanical parameters given by [19], which we recall
in Table 2

Wing half span S[m] Chord c[m] Air density ρa
[
kg/m3

]
Lift excentricity e Unsteady parameter Mθ̇

0.3048 0.0762 1.225 0.25 −1.2

Table 2: Wing geometry and aeromechanical data [6]

For the structural calculations, we use Classical Laminated Plate Theory (CLPT). The mem-
brane forces n and the bending moments m are calculated form the in-plane strain ε and the
curvature κ as [20] [

n
m

]
=

[
A B
B D

] [
ε
κ

]
(15)

where A is the membrane stiffness, D the bending stiffness and B is a matrix describing the
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coupling between bending and membrane effects. ε and κ are expressed in Voigt notation as

κ =

 −∂2w
∂x2

−∂2w
∂y2

−2 ∂2w
∂x∂y

 (16)

ε =

 ∂u
∂x
∂v
∂y

∂u
∂y

+ ∂w
∂x

 (17)

When there is no in-plane loading (n = 0) and the plate is only charged with bending loads, Eq.
15 can be rearranged as

m =
(
D−BA−1B

)
κ (18)

where
D̃ = D−BA−1B (19)

is again a bending stiffness matrix, but modified to take into account the membrane-bending
coupling [21].

To derive the equations of motion, the Lagrange equation is used

d

dt

(
∂T

∂q̇

)
+
∂U

∂q
=
∂(δW )

∂(δq)
(20)

where T is the kinetic energy, U the potential energy due to elasticity, δW is the virtual work
of the aerodynamic and damping forces and q is the vector of generalised coordinates .

The energy expressions to be injected into this equation are given in the following. The elastic
potential energy is given by the expression [22]

U =
1

2

∫ ∫
mTκdxdy (21)

which can with the help of Eq. (18) be expanded to

U =
1

2

∫ ∫
κTD̃κdxdy (22)

The kinetic energy is given by [19]

T =
1

2
ρd

∫ ∫
ẇ2dxdy (23)

where d is the total thickness of the plate, ρ is the density of the layup the plate consists of, and
ẇ is the vertical displacement velocity, the dot above w representing a derivative with respect
to time.

The virtual work is expressed using the line lift la and the aerodynamic line moment ma as [18]

δW =

∫
la(−δw)dx+

∫
maδθdx (24)
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where δw and δθ are virtual displacements. The lift and moment expressions are taken from
[19]

la =
1

2
ρaV

2caw

(
θ +

ẇ

V

)
(25)

ma =
1

2
ρaV

2c2

(
eaw

(
θ +

ẇ

V

)
+Mθ̇

θ̇c

4V

)
(26)

ρa is the air density, and aw = 2π
(

1−
(
x
S

)3
)

is the lift curve slope along the span [19].
Coefficient Mθ̇ = −1.2 [19] is an unsteady aerodynamic moment derivative, which is assumed
constant.

In order to apply the Rayleigh-Ritz framework, we make an approach for the modal displace-
ment using simple algebraic polynomials [23]

w(x, y) =
nx∑
i=1

ny∑
j=1

q(ij)

(x
S

)i+1 (y
c

)j−1

(27)

where
q(ij) = q̂(ij) exp(λt) (28)

θ is derived from this using a small displacement approximation θ ≈ sin(θ) ≈ ∂w
∂y

Injecting the mode shape approach into the energy expressions Eqs. (22, 23,24) and putting the
results into the Lagrange equation Eq. (20), the equations of motion are obtained as [18]

Mstructq̈ + Kstructq = Daeroq̇ + Kaeroq (29)

This can, as in [18], be written as a generalised eigenvalue problem[
0 I

(Kaero −Kstruct) Daero

] [
q̂
λq̂

]
=

[
I 0
0 Mstruct

]
λ

[
q̂
λq̂

]
(30)

where Mstruct and Kstruct are the structural mass and stiffness matrices, respectively, and Daero

and Kaero denote the aerodynamic damping and “stiffness”. The eigenvalues are given as λ =
−ζω ± ıω

√
1− ζ2 [18]. The system becomes unstable when the damping ζ becomes negative

Re(λ) > 0. In the stability limit ζ = 0, the expressions for the eigenvalues simplify to λ = ıω,
so the frequency can be determined. The freestream velocity at this point is the critical flutter
velocity. It is determined by increasing the velocity and solving the eigenvalue problem until
the instability condition ζ = 0 is encountered.

4 UNCERTAINTY QUANTIFICATION METHOD

While being the most simple and for its simplicity the most popular uncertainty quantification
method, Monte Carlo methods suffer from the high number of calls to deterministic solvers, ren-
dering their computational cost prohibitive. Polynomial chaos methods try to solve that problem
by replacing the solver by a polynomial spectral decomposition of the stochastic response which
acts as a surrogate model [24]

u(θ) ≈
∞∑
i=1

ûiφi(θ) (31)
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where u is the stochastic response, which will be the critical flutter velocity Vf in this case, θ is
its stochastic input vector consisting of the uncertain polar parameters in this study, the φi are
the orthogonal base polynomials and ûi are expansion coefficients weighting the base functions
to obtain the correct response. Practically, the decomposition is cut off at a finite number of
terms M , which depends on the number of stochastic parameters N and the polynomial order
P [25]

M =
(P +N)!

P !N !
− 1 (32)

As this number of terms increases rapidly with the number of stochastic parameters, construct-
ing a model with the ply parameters as direct input would be too costly. Instead, we use the
polar parameters, which reduces the number of stochastic inputs to six and makes the method
thus applicable.

Initial development of the polynomial chaos method was for Gaussian distributions using Her-
mite polynomials [26]. The method was then generalised to a number of families of distributions
using the polynomials in the Askey scheme [9]. Soize and Ghanem [13] provided the formalism
to extend the method to arbitrary distributions by using orthogonalisation schemes to create the
base functions. However, examples of applications on correlated variables were rare. This work
will be based on a recent example by [14] which employs the Gram-Schmidt algorithm for the
creation of said orthogonal polynomial basis.

In the framework of their method, orthogonality is defined with the help of a scalar product of
functions as follows

〈φi, φj〉 =

∫
Θ

φi(θ)φj(θ)p(θ)dθ = E{φi(θ)2}δij (33)

The Gram-Schmidt algorithm uses this scalar product to calculate coefficients cjk that balance
the total polynomial term in order to ensure that for each new term, the scalar product is zero.
The procedure is then [14]

φ0(θ) = 1 (34)

φj(θ) = ej(θ)−
j−1∑
k=0

cjkφk(θ) (35)

where ej = {1, θ1, θ2, . . . , θ6, θ
2
1, θ1θ2, θ1θ3, . . . }.

The corresponding coefficients are

cjk =
〈ej(θ), φk(θ)〉
〈φk(θ), φk(θ)〉

(36)

where 〈·, ·〉 is the scalar product defined in Eq. 33. When analytical expressions for the distribu-
tion or its characteristic or moment-generating functions are available, the polynomials can be
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directly computed [14]. However, for the polar parameters, such expressions are not available
to date. For this reason, Monte-Carlo integration is used to calculate the necessary integrals. As
this only involves evaluation of polynomials, the computational cost of this operation remains
low.

In ordinary polynomial chaos, the expansion coefficients from Eq. 31 are computed either
through insertion of the chaos expansion into the Galerkin formulation [14] or in a way similar
to the calculation of the orthogonalisation coefficients in the Gram-Schmidt process as [25]

ûi =
〈u(θ), φi(θ)〉
〈φi(θ), φi(θ)〉

(37)

However, as the variable of interest, the critical flutter velocity Vf depends on a nonlinear in-
stability root, the Galerkin formalism is not available in this case and the quadratures involved
in the expression given above would require knowledge of the analytical expression for the dis-
tribution function. As this is not available, we resort to fitting to a random set of points in the
parameter space via least-squares regression [6].

A graphical description of the full procedure to calculate the response surface using the arbitrary
polynomial chaos (aPC) is given in Fig. 3.

aPC metamodel (Eq. (31))

Expansion coefficients ûi

Least-Squares fitpolynomial basis {φi}

Gram-Schmidt
Orthogonalisation

(Eq. (35))

Monomials ej Samples from joint parameter pdf p(θ)

Result samples

Solver

MC samples of parameters

Figure 3: Scheme showing the steps of the aPC procedure

However, the response in critical flutter velocity to the material parameters is generally non-
smooth, in which case global application of polynomial chaos methods fails [6]. Ibid., it was
proposed to partition the parameter space and to apply the polynomial chaos to the different
partitions. We present in the following a refined, fully automated method based on machine
learning algorithms for this separation, in order to be able to use the arbitrary polynomial chaos
methods in presence of the discontinuities in the response surface.

A key challenge in this problem is to identify the different modal regimes present in the aeroelas-
tic response responsible for the discontinuities in critical flutter velocity. The present approach
relies on a preliminary low-resolution Monte Carlo simulation, which results in example points
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of the critical flutter velocity Vf and the flutter frequency ωf , which is a strong indicator for a
change in modal behaviour. An example data set issued from such a preliminary sampling is
given in Fig. 4.

400

500
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700

800

900

1000

60 80 100 120 140 160

ω
f

Vf

Figure 4: Clouds of example points showing Vf plotted against ωf for configuration L1 (Table 7). The colors
indicate the results of the DBSCAN clustering [27]

In most cases, the points are clearly different in either critical flutter velocity or flutter frequency,
which leads to several regions with high densities of points separated by large areas with ex-
tremely low or zero point density. Using this convenient property, clustering is performed using
the DBSCAN algorithm [27], which was designed exactly for that scenario. We use the imple-
mentation in scikit-learn [28], where we adjust the critical distance ε and the minimum number
of samples to form a new cluster to prevent the algorithm from performing too many splits.

The labels gained from the clustering are then used to train a classification algorithm on the
samples of material parameters associated to the Vf and ωf samples used in the clustering,
after a rescaling to operate on the real parts of the complex material constants Eq. (3) - (4)
and scaling the data to zero mean and unit variance. The trained classifier is able afterwards
to approximately tell the modal regime a sample will fall into, given only the values of the
polar parameters. Different classification algorithms from scikit-learn were tested with their
respective default parameters. The results are given in Table 3. As it performed best in the test,
the Multi Layer Perceptron (MLP) classifier is chosen.

Algorithm Correctly identified samples (%)
k Nearest Neighbours 92.9%
Support Vector Machine 96.1%
Multi Layer Perceptron Classifier 98.4%

Table 3: Percentage of correctly identified samples in a set of 100000 Monte Carlo samples for configuration L1
(see Table 7).
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The trained classifier is then used to filter the samples for the construction of the polynomials
and to attribute them to the different response surfaces. For the fitting, the clustered samples
from the previous step are reused in order to avoid additional calls to the solver. The final
sampling of the response surface is filtered by the classifier in the same way.

Fig. 5 provides a summary of the intervention points into the arbitrary polynomial chaos proce-
dure given in Fig. 3.

Samples

Classifier
(Neural Net-
work/MLP)

Clustering
(DBSCAN)

Preliminary
samples

Polynomial
construction

(Gram-
Schmidt,
Eq. (35))

Fitting

Metamodel
(Eq. (31))

Training data

Figure 5: Intervention points of the machine learning approach employed in the aPC framework

5 RESULTS

In order to study the behaviour of wings as described in Section 2, we choose AS4/3502 as base
material, which has been used before in studies on free vibration [1, 29] and aeroelasticity [2].
Its engineering moduli are given along with Poisson’s ratio, the density and the ply thickness in
Table 4.

E1[GPa] E2[GPa] G12[GPa] ν12[−] ρ[kg/m3] Ply thickness t[mm]
138.0 8.96 7.1 0.3 1600 0.1

Table 4: Nominal orthotropic engineering modules of AS4/3502 UD tape

The corresponding polar parameters of the base layer are given in Table 5. The high values of
the anisotropic polar parameters indicate a high degree of orientation of the elastic properties.

T0[GPa] T1[GPa] R0[GPa] R1[GPa] Φ0[deg.] Φ1[deg.]
21.35 19.15 14.25 16.23 0 0

Table 5: Polar constants for the stiffness tensor of AS4/3502 UD tape

11



IFASD-2017-144

Starting from this base material, the domain of orthotropic layups with a thickness equivalent
to a sixteen-ply layup will be studied. We will put the focus on a switch in modal behaviour in
the said domain. Based on this preliminary deterministic study, specific layup configurations of
which the nominal properties are close to the mode switch will be chosen, which will then be
subject of a study of their behaviour in case of stochastic ply thickness and ply angle error.

5.1 Mode switching

Fig. 6 shows the aeroelastic response on the domain of the orthotropic laminates that can be
created with the base material of which the elastic properties were given in Table 4 and Table 5,
as defined by bounds Eqs. (11) - (14) and described in Fig. 1.
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Figure 6: Response surface in critical flutter velocity and frequency. The examined configurations are marked with
dots.

From left to the right, the critical flutter velocity declines, before increasing in a sudden step,
which in this case spans over a straight line which can be described by the equation in theR0-R1
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plane [
(−1)KRD,switch

0

RD,switch
1

]
=

[
0.92

0

]
+ t

[
−2.87
3.03

]
, t ∈ [0, 1] (38)

On the right of the step, the critical velocity decreases again. The step is also present in the
frequency response, which otherwise presents less variation.

As the frequency response indicates, the step in the aeroelastic response is due to a switch
in modal behaviour. Interestingly, the point corresponding to the maximal (optimal) critical
flutter velocity lies on the upper border of the domain (see Fig. 6) and also on the border of
the discontinuity. The corresponding stacking sequence is given in Table 7 as L1, which is an
angle-ply laminate with ply angle 28.4 degrees.

The mode switch is demonstrated in Fig. 7 and Fig. 8. by showing two angle-ply laminate
configurations which are offset by two degrees in ply angle from the aforementioned optimal
configuration present on the upper left end of the mode switch. Both offset configrations lie on
the upper border of the domain, but they are not depicted on Fig. 6, being very close point L1.

The first configuration is on the right of the mode switch and has the higher critical flutter
velocity. Fig. 7b shows that the associated mode is a “first bending-dominated” mode, of which
the real part of the corresponding eigenvalue is represented in Fig. 7a by the green line. It is
clear from the eigenvalue plot that the mode is the first unstable mode since it is the first to cross
the zero line, the event defining the critical flutter velocity.
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Figure 7: Stability plot and flutter mode for laminate with an offset of minus two degrees to the mode switch

As the material changes, the mode shapes change accordingly, which leads to the mode associ-
ated to the eigenvalue represented by the violet line becoming unstable (Fig. 8a). As its unstable
region starts at lower velocities, the mode is the one defining the critical flutter velocity. The
associated mode shape is a “second bending-dominated” mode.
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Figure 8: Stability plot and flutter mode for laminate with an offset of plus two degrees to the mode switch

We suspect that the mode switch in this case is triggered because the laminates get less and
less stiff against bending from right to left, whereas the torsion stiffness increases. This might
explain why more violent or higher order bending modes become more attractive to the left of
the graph.

For a stochastic examination, three configurations are chosen from the polar domain along the
mode switch. Their polar parameters are shown in Table 6 and their stacking sequences in Table
7.

• Layup L1 is the angle-ply laminate corresponding to the optimal (maximum) critical flut-
ter velocity. It sits on the upper border of the polar domain Fig. 6, as well as on the upper
point of the mode switch line. This laminate is uncoupled, homogeneous and orthotropic,
with its principal axis of orthotropy aligned to the wing span.
• Layup L2 is a laminate that is much closer to the isotropic point (origin of the axis in

Fig. 6). Orientation effects are consequently expected to be weaker. Nevertheless, it is
also placed directly at the border to the mode switch. It is particular because one of its
material invariants (R0) almost vanishes, which might change its stochastic behaviour.
• Case L3 is chosen not to be directly next to the mode switch, but to have a small offset.

It serves as a benchmark case to observe what happens if a laminate is only peripherably
affected by the mode switch, and also to test the uncertainty quantification methodology.

Case T D̃0 [Nm] T D̃1 [Nm] (−1)KRD̃0 [Nm] RD̃1 [Nm] K ΦD̃1 [deg.] Vf [m/s] ωf
[
rad
s

]
L1 7.288 6.538 −1.948 3.032 1 0 143.48 505.24
L2 7.288 6.538 −0.056 0.986 1 0 127.96 450.24
L3 7.288 6.538 −1.408 2.941 1 0 138.67 499.83

Table 6: Polar properties of the different layups presented in Tab. 7

Case Stacking sequence Remarks
L1 [28.42,−28.44, 28.42,−28.42, 28.44,−28.42] Vfmax

L2 [∓27.6, 90, 27.6, 90,−27.62,±27.6, 27.62, 90,−27.6, 90,∓27.6] —
L3 [34, 0,−342,±34, 34, 02,−34,±34, 342, 0,−34] —

Table 7: List of laminates based on AS4/3502

14



IFASD-2017-144

5.2 Uncertainty propagation

In this work, we consider two main types of uncertainty inherent to the nature of the composite
plate. One of them is the uncertainty in the ply thicknesses, which we consider distributed
Gaussian with a coefficient of variation of about five percent. The second kind of uncertainty
is the ply angles, which we also consider Gaussian with a standard deviation of one degree. A
summary of the uncertainties is given in Table 8.

σt[mm] 0.005 σθ[deg.] 1.0

Table 8: Standard deviations of the uncertainties in ply thicknesses and ply angles

These uncertainties are then propagated for each of the laminates listed in Table 7 through the
arbitrary polynomial chaos procedure described in Fig. 3, with the machine learning procedures
handling mode switches, if they occur, and splitting the response surfaces accordingly (Fig. 5).
We use 103 samples of Vf and ωf obtained by propagation through the aeroelastic solver for the
preliminary sampling, where we did a convergence study to make sure the number of samples
Nmc provides a certain robustness of the results. We use a feedback loop to ensure that each
mode is sampled with a minimum number of preliminary samples of 102. Through this mea-
sure, the quality of the least-square fits of partial response surfaces is ensured. 105 Monte Carlo
samples of the polar parameters are then used to calculate the orthogonal polynomial bases for
the different response surfaces. This process does not involve calls to the aeroelastic solver. The
polynomials are then fitted to the the preliminary samples of Vf . The final, assembled polyno-
mial chaos model is then sampled using 105 samples of the polar parameters. This process
does not involve calls to the aeroelastic solver, either. In summary, using the presented method,
the number of calls to the aeroelastic solver decreases by a factor of up to 100 with respect to
standard Monte Carlo simulation.

Fig. 9 shows the resulting distribution of the critical flutter velocity for layup L1 (Table 7). The
distribution is multi-modal, which means that a mode switch has occured. The first mode is well
distributed at values close to the nominal deterministic Vf value of about 143 [m/s], (continuous
vertical line in Fig. 9) although it shifts slightly to the left. The left-shift might come from the
fact that the response surface is decreasing in one direction.

The second mode that takes values at much lower critical velocities of roughly between 70 and
100 [m/s], which represents a major decrease from the nominal values. This second mode has
a wider spread than the principal one, which is because the corresponding part of the response
surface has higher gradients.

Along with the distribution and the nominal Vf value, we show a value at 15% below the nom-
inal value which corresponds to a common flutter dimensioning criterion [30]. In this case,
this corresponds to a value of about 122 [m/s]. We also present an estimate of the 1% quantile
(75 [m/s]). While the margin obviously misses the start of flutter for the stochastic configura-
tions, the 1% quantile estimate provides a more robust indicator.

The comparison with a Monte Carlo simulation shows that the arbitrary polynomial chaos
model succeeds in representing the stochastic response surface with satisfactory accuracy.
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Figure 9: Distribution of critical flutter velocity Vf for layup L1. The black vertical bar is the nominal value, the
red bar a 15% margin based on the nominal value and the blue line is an estimation of the 1% quantile
for the critical flutter velocity.

The stochastic flutter results for layup L2 (Table 7) are shown in Fig. 10. Again, the distribution
is bimodal, which means that a mode switch has been triggered. Despite the fact that the nomi-
nal laminate configuration is placed very far from the previous example in the polar orthotropic
domain, it behaves in a very similar manner. The slight offset of the probability maximum in
the probability density function mode observed in Fig. 9 is also observed in this example, as
well as the inferior probability density function mode spreading wider than the one closer to the
nominal Vf value. However, compared to the previous example, the individual modes show a
smaller variance. This could be due to the different response in this region, but also be due to a
layup more robust to stochastic perturbations.
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Figure 10: Distribution of critical flutter velocity Vf for layup L2. The black vertical bar is the nominal value, the
red bar a 15% margin based on the nominal value and the blue line is an estimation of the 1% quantile
for the critical flutter velocity.

The last case of laminate L3 serves as a benchmark for the uncertainty quantification method,
particularly the separation of the response surfaces by the machine learning procedure. It is not
placed in direct vicinity to the mode switch, but is offset by about 1.5 standard deviations from
the configuration that flutters. The results are shown in Fig. 11.

In this case, the low-velocity probability density function mode represents a much smaller prob-
ability mass than the principal probability density function mode located close to the nominal
value. The latter is also distributed much more symmetrically around the nominal value than in
the previous examples.

While this principal probability density function mode is well resolved by the uncertainty quan-
tification method, the method struggles more with the lower velocity mode, which can be seen
in the comparison to the plain Monte Carlo simulation. Its spread is also estimated too wide.
However, it can still provide information about the mode switch occuring, which is also indi-
cated by the quantile estimate based on it.
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Figure 11: Distribution of critical flutter velocity Vf for layup L3. The black vertical bar is the nominal value, the
red bar a 15% margin based on the nominal value and the blue line is an estimation of the 1% quantile
for the critical flutter velocity.

6 CONCLUSION

In this work, stochastic flutter prediction taking into account the inherent uncertainty in the com-
posite material was carried out by coupling the polar method with aPC dedicated to correlated
random variables. Results show changes in the modal behaviour with respect to the uncertain
parameters. The important changes in the critical flutter velocity due to the mode change are
well handled by the response surface splitting procedure based on machine-learning, permitting
quite accurate predictions of the critical flutter velocity across the mode switch.

The present investigation makes clear that uncertainty quantification is a valuable tool for flutter
risk evaluation. It has been shown to provide additional security over the classical flutter margin
in case of mode switches which often change the critical flutter velocity by far more than the
canonical 15%, the security margin given assumed in classical flutter analysis.

While this investigation represents a working proof-of-concept and was able to highlight the
benefits of stochastic methodology, it has to become more precise to be useful for robust opti-
misation and risk-analysis-based design. To achieve this, more advanced approximations of the
distributions of the polar parameters have to be developed, along with a resolution of the poly-
nomial chaos approximation by quadrature. This would enable error estimates on the quantiles,
which in turn enables adaptivity and taking into account rare events.
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