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Abstract

A numerical study of the effect of uncertainties in ply angles and thicknesses on the flutter
speed of a cantilevered composite plate wing was conducted in this paper. Reduction of the
number of uncertain parameters was possible thanks to the use of the polar method, which also
enabled a systematic analysis of the influence of material symmetries. From the polar domain
of orthotropic laminates, several stacking sequences were reconstructed in order to propagate
parametric uncertainties. Typical fabrication uncertainties on ply thicknesses and angles were
were considered in order to quantify their influence on the probabilistic aeroelastic response.
The reduction of the set of stochastic parameters by the polar method enabled the use of a
polynomial-chaos approach which was combined with machine-learning techniques in order to
deal with the correlation and with discontinuities in the response surface. Results reveal that
possible manufacturing tolerances cause significant deviations in the critical flutter speed from
the nominal value, especially when mode switches occur. As these deviations surpass classical
dimensioning margins, uncertainty quantification approaches can provide added safety.

1. Introduction

As they have a high strength- and stiffness-to-weight ratio, composite materials are increasingly
employed in structural design in aeronautics. Moreover, the anisotropy of their stiffness permits
adaption of the material to aeroelastic requirements, a process which is known as aeroelastic
tailoring. This allows for improvements of performance and economy in modern aircraft.

However, anisotropy introduces a certain amount of challenges in the design of composite
structures. When considering the dynamical behaviour, systematic studies of composite plates
in free vibration have begun at the end of the 1960s and the beginning of the 1970s [1, 2]. Interest
in using composite plates for dealing with aeroelastic problems rose soon, with the first studies
conducted by Ramkumar and Weisshaar [3]. Intensive theoretical and experimental research has
been carried out afterwards: pioneering work on aeroelastic tailoring [4, 5, 6] was accompanied
by parameter studies in free vibration and aeroelasticity [7, 8, 9, 10].

Studies of uncertainty quantification on composite plates and especially on their vibration
behaviour appeared in the late 1980s, as in [11]. Recent years have seen a renaissance of interest
in uncertainty quantification with respect to the vibratory behaviour, where the authors take
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special interest in the layup effects, and forward as well as inverse uncertainty propagation is
performed [12, 13, 14, 15]. Interest has consequently been picked up in the field of aeroelasticity
[16, 17]. A recent research by Scarth et al. [18] considered laminated composite materials and
performed forward quantification of uncertainties in ply angles on the flutter speed of a cantilever
wing, with a restriction to symmetric layup configurations.

Analysing individual ply angles and ply thicknesses, when they are combined in the laminate
stacking sequence with rising number of plies, becomes quickly too complex to draw meaningful
conclusions on the laminate’s global behaviour. This is why, at the end of the 1970s/the beginning
of the 1980s, different approaches were developed in order to provide more synthetic parameters
for the analysis and design of composite laminates. Tsai and Hahn [19] introduced the concept
of lamination parameters. Roughly at the same time, Verchery [20] developed the polar method,
which is based on tensor invariants and is thus more general [21]. Whilst the early is more
widely used, the latter has seen considerable work in the 2000s: the polar method was applied
in the formulation of optimal design problems for composite structures [21, 22, 23, 24], and
thermodynamic and geometric bounds [23, 24, 25] were defined for the existence of laminates
in the space of polar parameters. Lamination parameters as well as polar parameters are
invariants with a change in the laminate’s reference frame, i.e. they represent intrinsic material
properties for the anisotropic behaviour of the laminate. Particularly, polar invariants give
precise informations on material symmetries. In addition, both approaches need a fixed number
of twelve and eighteen parameters respectively in order to represent the general behaviour of a
laminate. This set can be even further reduced depending on the behaviour of interest. In the
case of the deterministic optimisation of orthotropic laminated structures, the problem can be
limited to a minimal set of two polar parameters, as shown in [23, 24, 26, 27]. This is a significant
advantage with respect to the direct use of the laminate’s constitutive parameters (ply angles
and thicknesses), since their number is directly proportional to the number of plies in the stack
and it can rapidly raise to several tenths when dealing with laminates for structural applications.

Either the lamination parameters approach or the polar method reduce the number of representative
parameters of the laminate, which is an advantage when dealing with optimisation problems or
stochastic studies of composite structures [18]. However, whilst ply constitutive parameters can
be considered as independent variables, lamination or polar parameters are correlated because
they are constructed on common aggregates of the same sets of ply properties linking the
variations. This fact can be a difficulty in the stochastic analysis of composite structures.

The polynomial-chaos techniques often used in structural problems originate in [28], where
they were written for independent Gaussian distributions. Xiu and Karniadakis [29] generalised
them to a whole set of different distributions contained in the so-called Askey-scheme, and
was quickly applied to fluid dynamics [30, 31] and fluid-structure interaction problems [32,
33]. However, these techniques can only deal with a limited number of independent stochastic
variables with well-known distributions. While advanced techniques based on sensitivity analysis
permit direct application of polynomial chaos techniques on ply angles and ply thicknesses (e. g.
[34]), these methods are still overwhelmed by the number of parameters when confronted with
typical numbers of plies in aeronautic applications. Lamination or polar parameters reduce the
number of parameters, but have the inconvenience that their distributions are correlated and
difficult to characterise, having no equivalent in the Askey scheme used for standard generalised
polynomial chaos.

Thus, some modifications of the classical techniques are introduced. In order to treat the
correlation, authors used decomposition procedures such as Karhunen-Loève decompositions
[35] or Rosenblatt transformation [18]. However, these methods either make strong assumptions
about the correlations as in the first case, or require the inverse of conditional CDFs as in
the latter, which are tedious to compute or approximate. Soize and Ghanem [36] described

2



a framework for applying polynomial chaos to arbitrary distributions. Navarro et al. [37]
demonstrated its use on correlated distributions. An approach of this family has already been
used by Dey et al. [38] in the context of an uncertainty study on a laminated plate in free
vibration, where it was used on individual, non-correlated variables in a fuzzy analysis. A
stochastic finite element study of fiber-reinforced laminate based on an approximation of the
random field using truncated Karhunen-Loève expansion was conducted in [39].

In this work, we will study the effect of typical fabrication errors in composite layups on
the aeroelastic behaviour of a rectangular cantilevered composite plate wing. In addition to ply
angles already treated by Scarth et al. [18], ply thicknesses will be incorporated in the study and
the hypothesis of symmetric and uncoupled stacking sequence will be realeased, so as to study
more general stacks and take into account the effect of non-zero membrane-bending coupling.
The study of the uncertainty in critical flutter velocity shows the advantages of probabilistic
evaluation over classical flutter qualification. In section 2, the aeroelastic example model will
be presented along with the instability solving method which will be used to determine the
critical flutter velocity, the mode shapes and the corresponding frequency. Section 3 gives a
summary of the polar method, which reduces the number of parameters and helps thus with the
interpretation of the material stiffness properties of the composite laminate layups. It will serve
as the principal tool of analysis and enables the use of response surface technologies. In Section
4, the deterministic aeroelastic response in the polar domain will be examined. Special attention
will be paid to switches in modal behaviour, which significantly alter the response in critical
flutter velocity and flutter frequency. This preliminary analysis will allow to choose pertinent
configurations of which the stochastic properties will be studied in Section 5.

2. Aeroelastic Problem

In this study, we analyse the aeroelastic response of a straight-wing model, composed of a
flat cantilevered laminated composite plate. This model is largely similar to that of [40, 18].
The associated aerodynamics is represented by a strip-theory potential-flow model. Despite its
numerous simplifications, this model permits to highlight the main interesting phenomena, i.e.
the effect of the anisotropic behaviour of composite laminates and particularly the emergence
of mode switches leading to discontinuities in the aeroelastic response. A scheme of the wing is
given in Fig. 1.
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Figure 1: Scheme of the cantilevered plate wing
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We note S the half span, c the chord, and b the half chord as illustrated in Fig. 1. The
reference axis is the x axis, which is situated mid-chord. This is also set as the reference axis for
the composite fibre direction. The axis of application of the aeroelastic line forces and moments
is offset from the x axis by −ec, where e is called the excentricity factor, rendered dimensionless
by the chord length. This excentricity factor is set to e = 1

4 throughout the paper, which
corresponds to the standard value for a flat plate. The freestream velocity V is assumed to be
aligned with the y axis, and the z direction is pointing downwards.

In the following, we will perform aeroelastic simulations on wings as presented in Fig. 1 with
the geometric and aeromechanical parameters presented in Table 1

Wing half span S[m] Chord c[m] Air density ρa
[
kg/m3

]
Lift excentricity e Unsteady parameter Mθ̇

0.3048 0.0762 1.225 0.25 −1.2

Table 1: Wing geometry and aeromechanical data ([40, 18])

The elastic behaviour of the wing is modelled following classical laminated plate theory. The
relation between generalised forces and displacements are given in that framework as [41][

n
m

]
=
[
A B
B D

] [
ε
κ

]
(1)

where n and m are the membrane forces and bending moments, A is the membrane stiffness,
D the bending stiffness and B describes the coupling between the membrane and the bending
forces. The curvature κ and the in-plane strain ε of the composite plate are defined as

κ =

 −
∂2w
∂x2

−∂
2w
∂y2

−2 ∂2w
∂x∂y

 (2)

ε =

 ∂u
∂x
∂v
∂y

∂u
∂y + ∂w

∂x

 (3)

Considering pure bending loads (n = 0), Eq. 1 can be rewritten in terms of the moments m only
as

m =
(
D−BA−1B

)
κ (4)

where we call
D̃ = D−BA−1B (5)

the modified bending stiffness matrix [42]. Tensor D̃ thus contains the information of coupling
tensor B. Consequently, it is valid for a general laminate’s stacking sequence, which is not
necessarily uncoupled or symmetric. However, when there is no coupling and B = 0, then tensor
D̃ reduces to bending stiffness tensor D.

The equations of the dynamic behaviour of the wing subject to aerodynamic loads are written
in the Lagrangian formalism. The elastic potential energy of the plate under bending load is [43]

U = 1
2

∫ ∫
mTκdxdy (6)

This expression can be expanded using Eq. (4) to

U = 1
2

∫ ∫
κTD̃κdxdy (7)
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The kinetic energy is given by [40]

T = 1
2ρd

∫ ∫
ẇ2dxdy (8)

where the dot above the displacement denotes a derivative with respect to time, d is the total
thickness of the plate and ρ is the density of the plate material.
Finally the virtual work of the aerodynamic lift and moment is obtained by [44]

δW =
∫
la(−δw)dx+

∫
maδθdx (9)

where the expressions for the line lift la and the line moment ma are given by quasi-steady strip
theory as [40]

la = 1
2ρaV

2caw

(
θ + ẇ

V

)
(10)

ma = 1
2ρaV

2c2
(
eaw

(
θ + ẇ

V

)
+Mθ̇

θ̇c

4V

)
(11)

being θ the rotation of wing section around the y-axis, ρa the air density, aw = 2π
(

1−
(
x
S

)3
)

the lift-curve slope along the span, and Mθ̇ is an approximation of the unsteady aerodynamic
moment derivative, which is assumed constant with Mθ̇ = −1.2 as in [40].

The equilibrium problem is formulated in the Lagrangian formalism as

d

dt

(
∂T

∂q̇

)
− ∂T

∂q + ∂U

∂q = ∂(δW )
∂(δq) (12)

where q is the vector of Lagrangian generalised coordinates.
In order to solve the equilibrium problem (12), we apply a Rayleigh-Ritz approximation of

the displacements w, as combination of simple algebraic polynomials [45]

w(x, y) =
nx∑
i=1

ny∑
j=1

q(ij)(t)
(x
S

)i+1 (y
c

)j−1
(13)

where nx and ny is the number of the monomial terms in the x- and y-coordinate respectively
and the generalised Lagrangian coordinate q(ij) is defined as a function of time:

q(ij)(t) = q̂(ij) exp(ıωt) , (i = 1, ..., nx; j = 1, ..., ny) (14)

Finally, angle θ in Eq. (10) is derived using an assumption of small displacements as θ = ∂w
∂x .

Using the Lagrange formalism of Eq. (12) and substituting Eq. (13) into Eqs. (7,8,9), the
equations of motion can be given as [44]

Mstructq̈ + Kstructq = Daeroq̇ + Kaeroq (15)

which can be reformulated as a generalised eigenvalue problem [44] in terms of the vector q̂ of
the nx × ny amplitude coefficients q̂(ij)[

0 I
(Kaero −Kstruct) Daero

] [
q̂
λq̂

]
=
[

I 0
0 Mstruct

]
λ

[
q̂
λq̂

]
(16)
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where Mstruct denotes the structural mass matrix, Daero the aerodynamic damping matrix,
Kaero the aerodynamic stiffness matrix and Kstruct the elastic stiffness matrix. The eigenvalue
is defined as λ = −ζω ± ıω

√
1− ζ2, so the wing enters in instability for Re(λ) > 0, i.e. ζ < 0.

For the limit of instability ζ = 0, the expression for the eigenvalues simplifies to λ = ıω and
λ2 = −ω2.

An example of flutter diagram (namely the V −λ diagram) with a selection of modes is given
in Fig. 2, which is calculated using the geometry and aeromechanical parameters from Table
1. A 1mm-thick steel plate was considered with Young’s modulus E = 210 [GPa] and Poisson
coefficient ν = 0.3. Fig. 2(a) shows the real part of the eigenvalues as a function of the velocity.
As it can be deduced from the instability condition given above, the flutter velocity is the lowest
velocity for which the real part of the eigenvalue passes though the zero, switching its sign from
negative to positive. This point is indicated by the black vertical bar. The corresponding flutter
mode is thus the green curve. The frequency in that point can be found using the right part
of the diagram Fig. 2(b), where the flutter velocity is again indicated by the black vertical bar.
The flutter frequency is found on the curve that corresponds to the flutter mode in the left part
of the figure which is again indicated by green lines. It is noted that the eigenvalues occur in
complex conjugate pairs. This is why there are two corresponding lines for each mode in part
(b) of the figure. In this case, flutter occurs at Vf = 68.41 [m/s] and at a circular frequency of
ω = 408.9 [rad/s].
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Figure 2: Example V − λ diagram for a 1mm-thick steel plate with the geometry given in Table 1. The critical
flutter velocity of 68.41 [m/s] is indicated by the black vertical bar on the left. On the right, the flutter frequency
of 408.9 [rad/s] is given.

3. The Polar Method

Despite not being the only factor, the behaviour of the structure has a significant influence on
the aeroelastic response of the system presented in the previous section. In the case of a cantilever
wing made of a laminated composite plate, the plate’s behaviour can be simply represented in
terms of a single stiffness tensor D̃, as shown in Eq. (5). However, this modified bending stiffness
tensor is generally anisotropic, which is difficult to represent and to interpret.

The elastic behaviour of laminates is often represented using the so-called lamination parameters
[19], which are sums of sinuses and cosinuses of angles in the laminate’s stack. Lamination
parameters have the advantage to be invariant for a rotation of the plate’s reference frame
and, for this reason, they have been widely used in the formulation of design and optimisation
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problems for laminates [46, 47, 48]. However, lamination parameters are defined for laminates
with identical layers (same ply material and same ply thickness throughout the sequence), so that
they cannot easily account for layers of different thickness. In addition, they are expressed for
the laminate’s stiffness behaviour only (tensors A, D or B) and they cannot be directly applied
to the representation of the modified stiffness tensor D̃ introduced in Eq. (5).

In order to give an intrinsic representation of the plate anisotropic behaviour which holds
valid in the case of different plies in the stack as well as for the modified stiffness tensor D̃, we
adopt the polar formalism [20, 21] which allows to represent any anisotropic tensor in the plane in
terms of polar invariants and angles. In the case of a fourth-order stiffness tensor Q representing
the rigidity of a general anisotropic material layer, the polar decomposition is described as follows
[21]

8T0 = Qxx − 2Qxy + 4Qss +Qyy (17)
8T1 = Qxx + 2Qxy +Qyy (18)

8R0e
ı4Φ0 = Qxx + 4ıQxs − 2Qxy − 4Qss − 4ıQys +Qyy (19)

8R1e
ı2Φ1 = Qxx + 2ıQxs + 2ıQys −Qyy (20)

whereQαβ are the Cartesian components of tensor Q (indexes x and y refer to the axis coordinates,
whilst s stands for shear). The same relations hold for the laminate’s tensors A, D and B, as well
as for the modified bending stiffness D̃. In Eqs. (17)-(20), positive scalars T0 and T1 represent
the isotropic part of the stiffness, whereas R0 and R1 represent the modules of the anisotropic
behaviour. Φ0 and Φ1 denote the angles of the deviation of the anisotropic material behaviour
with respect to the reference axis. Quantities T0, T1, R0, R1 and (Φ0 − Φ1) are invariants, while
angles Φ0 and Φ1 depend on the choice of the reference frame.

The inverse of the operations (17)-(20) give the cartesian representation of the stiffness tensor
in terms of the polar constants [21]

Qxx = T0 + 2T1 +R0 cos(4Φ0) + 4R1 cos(2Φ1) (21)
Qxy = −T0 + 2T1 −R0 cos(4Φ0) (22)
Qxs = R0 sin(4Φ0) + 2R1 sin(2Φ1) (23)
Qyy = T0 + 2T1 +R0 cos(4Φ0)− 4R1 cos(2Φ1) (24)
Qys = −R0 sin(4Φ0) + 2R1 sin(2Φ1) (25)
Qss = T0 −R0 cos(4Φ0) (26)

A significant advantage of the polar method is that it allows to easily determine material
symmetries [21]. In the isotropic case, the anisotropic invariants R0 and R1 are obviously zero.
Square-symmetry is expressed when only the fourth-order harmonic of module R0 persists (see
eq. 21), i.e. when module R1 is zero. Plain orthotropy is obtained when the two different
anisotropic harmonics have same or opposite phases, i.e. Φ0−Φ1 = K π

4 , where K = {0, 1} is the
orthotropy shape parameter. A special case is distinguished when R0 = 0, namely R0-orthotropy
[49]. A summary of the symmetry conditions is given in Table 2.
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Elastic symmetry Polar condition
Orthotropy Φ0 − Φ1 = K π

4 ,K ∈ {0, 1}
R0-Orthotropy R0 = 0

Square Symmetry R1 = 0
Isotropy R0 = R1 = 0

Table 2: Conditions for elastic symmetries in terms of polar invariants [21]

As we are interested in the bending stiffness behaviour of uncertain stacking sequences which
can be elastically coupled, the polar formalism will be applied to the modified bending stiffness
tensor D̃ from Eq. (5). Its polar components are noted T D̃0 , T D̃1 , RD̃0 , R

D̃
1 , Φ

D̃
0 , Φ

D̃
1 , according to

relations Eqs. (17) - (20).
Naturally, admissible values of such polar parameters are limited within a domain of existence

satisfying thermodynamic constraints [25]. For composite laminates, there are additional constraints
that originate in the layup geometry, which means angle values and their distribution throughout
the thickness. Considering the case of nominally orthotropic laminates made of a given elementary
layer or base material, the bounds are obtained in [26, 25] as

0 ≤ R0 (27)
0 ≤ R1 (28)

R0 ≤ Rmax0 (29)

2
(

R1

Rmax1

)2
− 1 ≤ (−1)K−KBM

(
R0

Rmax0

)
(30)

in terms of the anisotropic moduli R0 and R1 and the orthotropy-shape parameter K (K =
{0, 1}, see Table 2) of the in-plane or bending behaviour of the laminate, as well as of the
orthotropy shape parameter KBM of the base material of the constitutive orthotropic layer. We
can distinguish Eqs. (27, 28) which have to be imposed because R0 and R1 are non-negative
moduli (see Eqs. (17)) - (20)) from the specific geometric bounds expressed by Eqs. (29, 30). As
shown in [25], the geometric constraints for composite laminates are always more restrictive than
the thermodynamic constraints. Then, conditions Eqs. (27) - (30)) are sufficient to represent the
boundaries of the admissible domain for all othotropic laminates made of a given base-material
layer.

As already done in [24, 26], the polar module R0 and the orthotropy-shape parameter K can
be combined in a single parameter RK = (−1)KR0, which is then a real-valued parameter with
sign. We remind also that for any laminate made of identical layers (same base material and same
thickness), the isotropic parameters of the laminate are fixed and equal to the ones of the base
material (see for instance [24, 26]). Then, only two independent parameters (−1)KR0 and R1
are sufficient to describe the behaviour of an orthotropic laminate made of a given base-material
layer. A graphical representation of the polar domain is given in Fig. 3 in the case of a base
material with KBM = 0, which is the most common case encountered in structural applications
of composite laminates.
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Figure 3: Domain for orthotropic laminates in the plane of the anisotropic polar parameters (−1)KR0 and R1.

The stiffness behaviour of the laminate represents one of the main influences on the system
presented in section 2. Changes in the laminate behaviour will alter the modal pattern and
consequently the flutter response of the wing. The main uncertainties in composite laminates
arise due to fibre placement errors and deviations in the ply thicknesses. Depending on the
manufacturing method, the magnitude of these errors can vary, but a given range of tolerance
affects all fabrication processes. These errors have in turn an effect on the stiffness properties,
i.e. on the polar parameters of the laminate, which become random. However, with a random
laminate, neither any material symmetry, nor uncoupling (B = 0), nor any specific orthotropy
direction, nor invariance of the isotropic components can be guaranteed. Consequently, the
vector of random parameters considered consists of all the six polar components of the modified
bending tensor D̃, which has been introduced to reflect the influence of elastic coupling B (Eq.
(5)).

θ = {T D̃0 , T D̃1 , RD̃0 , R
D̃
1 , Φ

D̃
0 , Φ

D̃
1 } (31)

This number of parameters is significantly lower than the total number of ply angles and
thicknesses in a typical laminate and stays constant independently of the number of layers in the
laminate. However, this reduction in the number of parameters comes with the by-effect that the
polar parameters Eq. (31) are correlated, which is a hard problem in uncerainty quantification.
A solution approach will be shown in section 5. Before analysing the effect of uncertainties, we
conduct a deterministic study of the aeroelastic response of the system introduced in section 2
over the polar domain of nominally orthotropic and uncoupled laminates.

4. Deterministic analysis of the aeroelastic response

In this section, a deterministic study will be performed on the flutter behaviour of composite
wings following the layout presented in section 2. The flutter critical velocity and frequency will
be analysed in terms of the variation of the polar constants over their admissible domain, thus
obtaining the flutter response surface. Afterwards, specific points will be chosen in the admissible
domain of orthotropic laminates and studied in detail.

Throughout this work, sixteen-layer layups based on AS4/3502 graphite/epoxy laminate [19,
50] will be studied. The engineering moduli of this base layer are shown in Table 3 along with
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the ply thickness and the density of the material. The corresponding polar parameters are given
in Table 4, as they can be deduced from Eqs. (17) - (20). Looking at the elastic modules of this
base material, and particularly considering that the values for the anisotropic polar constants R0
and R1 are significantly different from zero, it can be concluded that the directional character of
the base material is strong.

E1[GPa] E2[GPa] G12[GPa] ν12[−] ρ[kg/m3] Ply thickness t[mm]
138.0 8.96 7.1 0.3 1600 0.1

Table 3: Material properties of AS4/3502 UD layer

TBM
0 [GPa] TBM

1 [GPa] RBM
0 [GPa] RBM

1 [GPa] ΦBM
0 [◦] ΦBM

1 [◦]
21.35 19.15 14.25 16.23 0 0

Table 4: Polar constants for the stiffness tensor of the AS4/3502 UD layer (BM = Base Material)

We notice that if we consider nominally uncoupled laminates (B = 0), the modified bending
tensor D̃ and the bending tensor D coincide, and so do their polar moduli.

Fig. 4 shows the admissible domain for the bending stiffness polar components (−1)KRD0
and RD1 of nominally orthotropic and uncoupled sixteen-layer layups that can be obtained using
layers of AS4/3502 as base material. According to the Classical Laminated Plate Theory (CLPT)
equations and to polar expressions Eq. (17) - (20), the nominal values of the isotropic polar
bending components TD0 and TD1 for such laminates are fixed and can be obtained as follows (t
is the layer thickness)

TD0 = 1
3

nplies∑
k=1

TBM
0

(
z3
k − z3

k−1
)

= (npliest)3

12 TBM
0 ≈ 7.29Nm (32)

TD1 = 1
3

nplies∑
k=1

TBM
1

(
z3
k − z3

k−1
)

= (npliest)3

12 TBM
1 ≈ 6.54Nm (33)

The anisotropic polar parameters (−1)KRD0 and RD1 of the nominal orthotropic layup have
to satisfy the bounds in Eqs. (27) - (30) where RD,max0 and RD,max1 are

RD,max0 = 1
3

nplies∑
k=1

RBM
0
(
z3
k − z3

k−1
)

= (npliest)3

12 RBM
0 ≈ 4.86Nm (34)

RD,max1 = 1
3

nplies∑
k=1

RBM
1
(
z3
k − z3

k−1
)

= (npliest)3

12 RBM
1 ≈ 5.54Nm (35)

For each pair of values
{

(−1)KRD0 , RD1
}

within the admissible domain, we evaluated the
flutter response of the cantilevered wing as depicted in Fig. 1, with the geometric and aeromechanical
parameters from Table 1, in order to obtain the response surface of flutter velocity and circular
frequency shown in Fig. 4. In these calculations, the principal orthotropy axis of the laminate is
considered to be aligned with the wing midchord axis x (i. e. ΦD1 = 0). We notice that the critical
flutter velocity Vf cannot be tied to one parameter alone and that is also not sufficient to maximise
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one or both of the parameters to achieve a high value for Vf , as the maximum for Vf in this
particular plane is found at

{
(−1)KRD0 = −1.948, RD1 = 3.032

}
with a value of Vf = 143.48m/s

(green square dot in Fig. 4). Furthermore, just starting out from the point of maximum Vf ,
we note an important step in Vf , which follows a straight line described approximately by the
equation [

(−1)KRD,switch0
RD,switch1

]
=
[
0.92

0

]
+ s

[
−2.87
3.03

]
, s ∈ [0, 1] (36)

Exactly the same step is present in the frequency response surface in Fig. 4(b) and it splits
the admissible domain into two sub-regions with values of frequency of about 850 [rad/s] and
500 [rad/s], respectively on the left and on the right side of the step. This is due to an abrupt
change in the instability mechanism, which is a switch of the aeroelastic mode when passing
through the step. Other than at the switching point, the frequency values stay almost constant
in each of the two sub-regions of the domain. The flutter velocity response surface shows more
evident changes. On the right of the step, the flutter velocity is almost insensitive to RD̃1 , whereas
the response surface is clearly inclined left of the step, showing a greater sensibility of Vf to RD̃1
in this part. The discontinuity is particularly important on Vf , as the minimum critical flutter
velocity of Vf = 76.3 [m/s] as well as the maximum of Vf = 143.48 [m/s] occur in direct vicinity
to the step.
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Figure 4: Response surface in critical flutter velocity Vf and flutter frequency ω in the RDK—RD1 plane, for
orthotropic layups based on AS4/3502 UD laminate
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Based on the response surface presented in Fig. 4, six configurations are extracted to be
examined separately in a stochastic framework when considering uncertainties on the constitutive
parameters of the laminates (angles and thicknesses). Their locations in the orthotropic plane
are indicated by the markers in Fig. 4 and their polar parameters are given in Table 5 along with
their corresponding critical flutter velocity and flutter frequency.

Case T D̃0 [Nm] T D̃1 [Nm] (−1)KRD̃0 [Nm] RD̃1 [Nm] ΦD̃0 [◦] ΦD̃1 [◦] Vf [m/s] ωf
[
rad
s

]
L1 7.288 6.538 −4.865 0 π/4 0 115.46 847.14
L2 7.288 6.538 0 3.916 0 0 125.06 498.82

L3/L4 7.288 6.538 1.048 1.484 0 0 116.26 448.60
L5 7.288 6.538 −1.948 3.032 π/4 0 143.48 505.24
L6 7.288 6.538 −1.408 2.941 π/4 0 138.67 499.83

Table 5: Polar properties and flutter response of the six configurations chosen on the response surface of Fig. 4.
Corresponding stacking sequences are given in Tab. 6

Stacking sequences corresponding to the six configurations of Table 5 are given in Table 6
(angles are referred to the reference axis x in our model, as described in section 2). All layups
are designed to be nominally orthotropic and uncoupled (B = 0), which means that D̃ = D in
the nominal configuration (cf. Eq. (5)). However, this convenient property cannot be guaranteed
if the layup is modified or disturbed by uncertainties.

Case Stacking sequence Property summary
L1 [452,−454, 452,−452, 454,−452] nominally square symmetric (RD̃1 = 0)
L2 [22.52,−22.54, 22.52,−22.52, 22.54,−22.52] nominally R0-orthotropic (RD̃0 = 0)
L3 [±23.2, 90,−23.2, 90, 23.22,−23.2, 23.2,−23.22, 90, 23.2, 90,±23.2] general orthotropic, far from the step
L4 [0,±58.8, 0,−58.8, 02, 58.8, 58.8, 02,−58.8, 0,∓58.8, 0] same nominal properties as L3
L5 [28.42,−28.44, 28.42,−28.42, 28.44,−28.42] general orthotropic, Vfmax

L6 [34, 0,−342,±34, 34, 02,−34,±34, 342, 0,−34] general orthotropic, close to discontinuity

Table 6: List of laminates based on AS4/3502 corresponding to selected points on the response surface of Fig. 4

The six laminate configurations are chosen to study the effects of uncertainties on their
particular propierties in section 5. The precise goals of the studies are detailed in the following.

• Layups L1 and L2 are both angle-ply sequences and are chosen to examine the effect of
material symmetry, with L1 being square-symmetric (RD1 = 0) and L2 being R0-orthotropic
(RD0 = 0) (see Table 5).

• L3 and L4 are two distinct three-orientation general orthotropic layups that share the
same nominal material properties, i.e. they correspond to a same and single point in the
domain of orthotropic laminates (see Fig. 4). They will serve to investigate the influence
of differences in the stacking sequences on the stochastic analysis.

• L5 is an angle-ply laminate placed in direct vicinity of the mode switch and coincides with
the maximum critical flutter velocity. It will demonstrate the effect of the mode switch in
the stochastic analysis.

• Finally, L6 is a three-orientation generally orthotropic laminate corresponding to a point
in the domain that can be affected by the mode switch since it is placed in its vicinity, even
if not exactly on the line of discontinuity.
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To provide for a better understanding of the elastic behaviour of the different layups in their
nominal configurations, circular diagrams of their equivalent engineering bending moduli are
given in Fig. 5, where E(δ) and G(δ) represent respectively the bending Young’s modulus and
the torsional modulus in a frame shifted by an angle δ with respect to the reference axis x. At
δ = 0 (horizontal axis in Fig. 5), the values of the bending modulus Ex and the torsional modulus
Gxy in the reference frame of our model can be found (see section 2). We notice that the curves
of E(δ) and G(δ) for layups L3 and L4 are superposed, since the two layups correspond to the
same point on the polar domain (see Fig. 4). We find that layup L2 has the highest bending
modulus Ex, followed by layups L3 and L4, and then in decreasing order of Ex one finds L6, L5
and, further away, L1.

The material with the highest torsional modulus Gxy is the square-symmetric laminate L1,
which is the only one in the “high shear” region of the orthotropic domain. Note that the square-
symmetry of L1 can very clearly be identified very clearly from the diagram of Young’s modulus
E(δ), whereas the R0-orthotropy of L2 is very difficult to distinguish just from the diagram.

The layups L3 and L4 show a less directional behaviour. Their anisotropic polar moduli
in Table 5 are smaller than for the other laminates and their torsional stiffness G(δ) takes the
form of a rounded square. Laminates L5 and L6 are general orthotropic layups with typical
“butterfly” modulus shapes in bending stiffness E(δ) and cross-shaped torsional modulus G(δ).
Their respective stiffnesses Ex and Gxy in the reference axes are intermediate stages between L1
and L2.

In summary, although the anisotropic parameters are not linearly linked to the engineering
moduli and cannot be tied to one modulus alone, torsional stiffness Gxy on the principal axes
goes down with higher values for (−1)KRD̃0 and bending stiffness Ex in the reference axis of the
wing goes up with higher values of RD̃0 and RD̃1 .
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Figure 5: Circular diagrams of the nominal elastic moduli of the selected points of Table 5 and layups in Table 6.

Fig. 6 shows the aeroelastic V −λ diagram for laminate L1 computed as explained in section 2.
The critical flutter velocity of Vf = 115.46 [m/s] is indicated by the vertical bar in Fig. 6(a).
From the mode shape in Fig. 6(b), one can clearly see that the flutter mode is bending-dominated
and can be described as a second bending mode. The torsion component in the mode, although
perceptible, is weak. This is in accordance with the high torsional stiffness Gxy and the weak
bending stiffness Ex of layup L1.
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Figure 6: V − λ flutter diagram and modal response of the square-symmetric L1 laminate. The vertical bar
indicates the critical flutter velocity Vf = 115.46 [m/s].

Layup L2 shows a very different aeroelastic behaviour (see Fig. 7), since its bending stiffness
Ex is much higher than for L1, while its torsional stiffness Gxy is substantially lower. Thus, its
modal behaviour appears to be torsion-dominated, even if a weak bending component is present,
but much less distinctive than in the L1 case. Also its critical flutter velocity is higher than for
L1 (Vf = 125.06 [m/s]).
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Figure 7: V − λ flutter diagram and modal response of the R0-orthotropic L2 laminate. The cricital flutter
velocity Vf = 125.06 [m/s] is again indicated by the black bar.

The two distinct unstable modes of laminates L1 and L2 describe the two flutter regimes
appearing on each side of the discontinuity on the response surface shown in Fig. 4. Now, we
focus attention on layup L5, which is placed on the high-velocity limit of the switch (see green
square dot in Fig. 4 and Table 6 ). In order to study the transition between the two regimes, we
generate two offset configurations L5+ and L5− by changing the lamination angle to 28.4◦ ± 2◦,
respectively. These offset configurations are still angle-ply laminates, thus they belong to the
upper border of the flutter domain and they lay on the left and right side of the discontinuity in
the aeroelastic response.

The flutter response of layup L5+ is shown in Fig. 8. Its modal behaviour is essentially the
same as for L1, i.e. it is characterised as a second bending mode. The unstable mode is shown
by the dash-dotted violet line in the V − λ flutter diagram in Fig. 8(a). Nevertheless, the real
part of λ, representing a growth rate, does not pass the zero line by much and decreases again
at higher velocities. This means that the mode would become stable again for airspeeds higher
than about 130[m/s].
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Figure 8: V −λ flutter diagram and modal response of laminate L5+. The cricital flutter velocity Vf = 89.54 [m/s]
is indicated by the black bar.

When passing on to laminate L5−, the mode that fluttered in the previous configuration,
again represented by a violet dash-dotted line in the V − λ diagram in Fig. 9(a), can still be
recognised. However, it is no longer unstable, which can be attributed to the shift in the laminate
sequence. The new flutter mode found in laminate L5− is shown by the solid green line. It could
already be distinguished in the previous example (see the solid green line in Fig. 8(a)), but was
not considered critical because it became unstable at higher velocities than the first mode.
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Figure 9: V − λ flutter diagram and modal response of laminate L5−. The vertical bar indicates the critical
flutter velocity Vf = 137.37 [m/s].

The mode switch is thus caused by (de-)stabilisation of one of the aeroelastic modes as a
function of the balance between the bending and torsional stiffness of the the composite laminate
of the wing. The small increase in bending stiffness when passing from layup L5+ to L5− stabilizes
the second bending mode. However, the transition in mode shape is not directly to a torsion-
dominated mode as found in layup L2 (see Fig. 7(b)), but resembles more a first bending mode
(Fig. 9(b)), which is consistent with the increase in bending stiffness. In order to attain torsion-
dominated modes, one has to move further right on the domain, where bending stiffness further
increases and torsional stiffness decreases, as for laminate L2. This transition from bending- to
torsion-dominated modes is smooth. The strong deviations of modal behaviour as a function
of the material stiffness and anisotropy and the associated deviations in critical flutter velocity
clearly highlight the need for uncertainty quantification. This is especially true in presence
of mode switches, which create steps in the velocity response, meaning that even very small
deviations in the material behaviour can cause violent changes in critical flutter velocity.
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5. Uncertainty propagation

In this section, uncertainty quantification in ply angles and thicknesses is performed in order to
study the stochastic aeroelastic response of the composite laminated wing previously investigated
from a deterministic point of view. First, the considered parametric uncertainties are depicted.
Next the stochastic solver developed to propagate the uncertainties in ply thicknesses and angles
is briefly described. Then, the stochastic aeroelastic response is analysed for a selection of polar
properties describing several laminates based on AS4/3502.

5.1. Uncertainty modeling
In this work, we consider the case of prefabricated layers of the size of the plate that are

placed on top of each other, which is a common manufacturing method for small plates [51]. In
that case, it is assumed that inside an individual layer, the ply angle is relatively constant, but
deviations are due to the manual manufacturing process of layering the plies. This allows to the
stochastic analysis of the laminate configurations L1 to L6 in Table 6 by considering random
modeling of the ply angle to a single scalar random variable for each ply as in [18]. We remind
that these layups correspond to five points, which were selected on the polar domain of Fig. 4 in
order to study the effect of elastic symmetries (L1 and L2), of different stacking sequences (L3
and L4) and of mode switch on the aeroelastic response (L5 and L6), as explained in detail in
section 4.

Hereafter, all ply angles and thicknesses are considered as uncertain variables characterised by
a Gaussian distribution with standard deviation of 1 [◦] and 0.005 [mm] respectively, as reported
in Table 7.

σt[mm] 0.005 σθ[◦] 1.0

Table 7: Standard deviations of the uncertainties in ply thicknesses and angles characterised by Gaussian
distributions

In order to compute the stochastic critical flutter velocity for a given layup configuration, we
need to propagate uncertainties in ply angles and thicknesses. Unfortunately, even in the case
of our rather simple aeroelastic model (see section 2), the use of plain Monte Carlo simulation is
computationally costly. This is why it is desirable to consider accelerated stochastic methods such
as polynomial-chaos approaches [29, 36]. Unfortunately, the number of uncertain constitutive
parameters, ply angles and thicknesses, of a laminated plate equals 2nplies. In the studied
case, nplies = 16, so we would already attain 32 uncertain variables, which is not affordable for
polynomial-chaos techniques due to the curse of dimensionality.

In the present work, we choose to consider the laminate’s modified bending polar parameters,
i.e. the vector θ of Eq. (31), as stochastic variables. The advantage of this choice is to bring the
number of uncertain parameters down to six independently of the number of constitutive layers
in the laminate, even when dealing with coupled and non-symmetric stacking sequences. In order
to measure how these uncertainties affect the stiffness properties and particularly the deviation
from the nominal values and symmetries, plain Monte Carlo simulations are performed. For a
given layup configuration, a set of 105 samples is considered according to the uncertainties in
ply angles and thicknesses defined in Table 7. Fig. 10 shows the resulting scatter plots of the
modified bending polar parameters θ in the case of layup L5. The distributions of the anisotropic
parameters exhibit rather strong correlation with the isotropic parameters, which indicates a big
influence of the thickness uncertainty. On the contrary, the anisotropic components do not
show very strong correlation with respect to each other. However, it must be noticed that the
correlation pattern depends on the layup.
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Figure 10: Scatter plots of pairs of modified bending polar parameters for layup L5 (105 samples drawn using
Monte Carlo simulation).

5.2. Non-intrusive stochastic solver
In the present work, an arbitrary Polynomial-Chaos (aPC) spectral decomposition method

[37] is specially adapted to deal with the correlation between the polar parameters. Indeed,
the aPC method can deal with arbitrary forms of the measure of probability by numerically
constructing the polynomials using the Gram-Schmidt algorithm [52]. The aPC expansion is
more general than the generalized Polynomial Chaos method (gPC) [29] since it may deal with
arbitrary distributions which can be described analytically or numerically [53] and with correlated
random variables [54].

However, polynomial-chaos approaches cannot directly deal with discontinuous response surfaces.
For this reason, we developed machine-learning techniques in order to identify the presence of
discontinuities as well as to classify clusters of points belonging to separate regions of the response
surface on either side of the discontinuity. Once the clusters are identified, the aPC method can
be applied separately on each cluster in order to reconstruct the corresponding smooth region
of the response surface. By employing machine-learning techniques we are able to treat the
discontinuity in a proper and automatic way. The aPC method as well as the techniques of
machine learning that we developed are described in detail in Appendix A.

In the following, we deploy the strategy of uncertainty quantification based on the combination
of aPC and machine-learning techniques to the list of laminate sequences given in Table 6. In our
study, we needed 103 samples of Vf and ωf in order to reliably get converged solutions out of the
step of machine learning, as well as to fit the response surface in the polynomial-chaos approach,
thus reducing of 102 times the number of calls to the aeroelastic solver with respect to plain
Monte Carlo techniques. In order to apply the aPC method, we conduct a preliminary sampling,
by generating samples of D̃ which are propagated through the deterministic aeroelastic solver.
These samples are then used for the fitting of the response surface as described in Appendix A.
All results presented in the following were obtained using polynomials of order P = 3 in the aPC
expansion.
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5.3. Square-symmetric layup L1
Histograms in Fig. 11 describe the distributions of the polar parameters of modified bending

stiffness (vector θ) for laminate L1 (refer to Fig. 4 and Tables 5 and 6) when applying fabrication
errors on angles and thicknesses according to data in Table 7.

The distributions of the isotropic polar parameters mainly depend on the thicknesses. As the
D bending stiffness tensor is function on the cubes of the ply limits zk (see eq. 32), which are
basically sums of the Gaussian distributed thicknesses, the distribution of its polar parameters
is dominated by a normal distribution to the cube. The curves have their maximum at around
the nominal value (vertical arrows in Fig. 11) and are steeper than a simple normal distribution,
as can be seen in Fig. 11(a) and 11(b).
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Figure 11: Distribution of the modified bending polar parameters for laminate L1 (cf. Table 6) due to the
uncertainties in ply angles and thickness described in Table 7 obtained by 105 Monte Carlo draws. Vertical
arrows point the nominal values of the bending polar parameters for layup L1.

As the nominal value of T D̃0 is higher than the nominal T D̃1 , its distribution is more widely
spread. The same behaviour can be observed for the isotropic components in the case of layups
L2 to L6, so the corresponding distributions will not be commented further in the following
subsections.
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The modified bending stiffness tensor D̃ (see Eq. (5)) takes into account the membrane-bending
coupling that arises when the nominal stacking sequences are perturbed by fabrication errors. Its
isotropic components are consequently not completely independent from the ply angle uncertainties,
which create a slight downshift in the parameter distribution. However, this barely manifests in
the shown histograms. An additional discussion on the separate effect of uncertainties in angles
and thicknesses on the distributions of polar parameters can be found in [55].

Naturally, the influence of the ply angle uncertainty is much higher in the anisotropic components
of the polar parameters of the material. Most importantly, the property of square-symmetry is
lost, as RD̃1 shifts up from its nominal zero value. However, the values of RD̃1 stay low, which
means that the RD̃1 characteristics are not very distinct (Fig. 11(d)). This goes along with the
associated angle distribution being very widely spread: the direction of the axis of orthotropy
ΦD̃1 , which was undefined in the nominal square-symmetric case, shifts to ±π4 (Fig. 11(f)). The
direction of the square symmetry stays in the same phase as before, so ΦD̃0 −ΦD̃1 recenters around
0 (Fig. 11(e). Modulus RD̃0 becomes widely spread under both the influence of the ply angle and
thickness uncertainties (Fig. 11(c)). The slight downshift with respect to the nominal value is
probably due to the ply angle uncertainty.

It must be noticed that, even if one assumes Gaussian distributions of angles and thicknesses,
the distributions of the bending polar parameters are not Gaussian anymore. Instead, they can
be arbitrary symmetric or skew distributions, as it is evident in the case of modulus RD̃1 (see
for instance Fig. 11). This result is confirmed in the case of layups L2-L6 (see for instance
Fig. 13(c)), which are described in the following subsections.

Now, the distribution of the critical flutter velocity Vf is calculated by the aPC method by
direct propagation of the stochastic polar parameters of vector θ and is given in Fig. 12. It has a
bell shape with the highest probability density around the nominal value, which is pointed by the
thick black arrow in the figure. While of course the deviations are noticeable, the distribution
remains relatively narrow. As the aeroelastic behaviour is dominated by the anisotropy, this
can be attributed to the fact that the response surface depicted in Fig. 4 does not exhibit high
gradients in the region around the nominal point for L1.

The classical flutter margin, which is just a plain 15% offset from the nominal value (see
the dash-dotted red arrow in Fig. 12), thus seems exaggerated in this case. It is situated far
below any region with significant probability density. A comparison with an estimation of the
1% percentile (dashed blue line in the figure) shows a large offset, suggesting some margin for
aeroelastic optimisation.
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Figure 12: Probability density function of Vf for the square-symmetric laminate L1 obtained by the aPC method
(with P = 3) based on the uncertain parameter input of Table 7. The solid black arrow indicates the nominal
critical flutter speed, the red dash-dotted arrow is the classical 15% flutter margin and the blue dashed arrow
indicates the 1% percentile for the occurrence of flutter.

5.4. R0-orthotropic layup L2
Layup L2 represents another special case of elastic symmetry [49], being R0 = 0 in the

nominal configuration (see Table 5). The nominal stacking sequence is given in Table 6 and
the representative point is illustrated in Fig. 4. The stochastic behaviour changes accordingly.
Histograms in Fig. 13 represent distributions of the modified bending polar parameters for
laminate L2 obtained by Monte Carlo simulation. With respect to the previous, square-symmetric
example, the behaviour of the anisotropic components is flipped. RD̃0 deviates up from its nominal
zero value and shows a skew distribution (see Fig. 13(c)), being zero a limit value for modulus
RD̃0 . Correspondingly, in Fig. 13(e) one can observe a large variability in the stochastic polar
parameters, according to the widely spread distribution of the difference of polar angles ΦD̃0 −ΦD̃1
with a bi-modal shape equally distributed between 0 [rad] and ±π4 [rad]. As a matter of fact, the
polar angle ΦD̃0 is not defined in the nominal configuration being RD̃0 = 0, and the uncertainties
on ply angles and thicknesses make the laminate deviate from the property of R0-orthotropy and
oscillate between low- and high-shear orthotropy (respectively, on the right and left side of the
polar domain, where the orthotropy shape parameter is KD̃ = 0 or KD̃ = 1).
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Figure 13: Distribution of polar parameters for the R0-orthotropic laminate L2 (cf. Table 6) due to the
uncertainties in ply angles and thickness described in Table 7.

The RD̃1 modulus is also highly uncertain, as can be noticed in the rather widely spread
distribution in Fig. 13(d). In contrast, the corresponding angle ΦD̃1 has a very narrow distribution
(see Fig. 13(f)), which means that the principal stiffness direction does not deviate that much
from its nominal position.

Figure 14 presents the flutter velocity distribution for configuration L2 obtained by propagating
the uncertain polar parameters in Fig. 13 through the aPC stochastic surrogate model. It
presents a steep bell shape with the probability density maximum very close to the nominal
value (black solid arrow in the figure). This distribution is similar in shape but wider than the
one for the square-symmetric layup L1 (cfr. Fig. 12). This can be attributed to the response
surface being steeper around the nominal point for layup L2 (cfr. Fig. 4), rather than to a
particular deviation in the polar parameters. Despite the higher uncertainty in the distribution,
the classical flutter margin (dashed red arrow in Fig. 14) is still quite far off any region of
noticeable probability density. Again, the offset to the 1% percentile (blue dashdotted line in
the figure) is high, suggesting optimisation potential.
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Figure 14: Probability density function of Vf for R0-orthotropic laminate L2 obtained by the aPC method (with
P = 3) based on the uncertain parameter input of Table 7. The solid black arrow indicates the nominal critical
flutter speed, the red dashed arrow is the classical 15% flutter margin and the blue dash-dotted arrow indicates
the 1% percentile for the occurrence of flutter.

5.5. Influence of the layup sequence on uncertainties
As it can be noticed in the previous subsections, the uncertainties in the polar parameters

change with the base configuration. In this subsection, advantage is taken of the possibility
to design layups with the same nominal stiffness properties, which was done here for layups
L3 and L4 (cfr. Tables 5 and 6, as well as Fig. 4). This allows to isolate layup effects in the
distributions. Histograms of the modified bending polar parameters for layups L3 and L4 are
obtained by Monte Carlo simulation and are shown in Fig. 15. The solid green and dashed
orange lines refer to L3 and L4 respectively. Other than L1 and L2, laminates L3 and L4
are general orthotropic three-orientation layups and they are not situated on the boundary of
the polar domain. Consequently, the distributions of the anisotropic moduli in Fig. 15(c)-(d)
are more symmetric and narrower than observed in the previous cases. Neither significant up-
or downshift of the main probability density mass from their nominal value can be observed.
Moreover, as both anisotropic components have nominal non-zero values, polar angles are quite
well determined, as one can see from the narrow distributions in Fig. 15(e)-(f).

Comparing the distributions of the two layups L3 and L4, differences can be observed notably
in the RD̃0 component and the associated angle (Fig. 15(c) and 15(e)). The distribution of RD̃0
for L3 is flatter and has longer tails than its L4 counterpart. In contrast, the distribution for
the associated angle ΦD̃0 is narrower with a higher peak. This is consistent with the previous
observation that a higher uncertainty in the modulus compensates for a lower uncertainty in the
polar angle, and vice versa.
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Figure 15: Distributions of the polar parameters for layups L3 and L4 (cf. Table 6) due to the uncertainties in
ply angles and thickness described in Table 7 (solid green line for L3 and dashed orange line for L4).

Despite the difference in the distributions of their polar parameters, the distributions in
critical flutter velocity obtained by the aPC procedure are virtually the same for L3 and L4, as
shown in Fig. 16 by the solid green and dashed orange line respectively. Any differences cannot
reliably be distinguished from numerical errors. Again, the curves are bell-shaped, with a spread
similar to the spread of the R0-orthotropic example (see previous subsection). As they have the
same nominal polar parameters, they share the same nominal value of Vf (black solid arrow in
the figure) and thus the same 15% flutter margin (red dashed line in the figure). The percentiles
are almost the same and they are represented by the blue dash-dotted arrow in Fig. 16. As
in the case of layups L1 and L2, the downshift of the 15% flutter margin with respect to the
probability distribution of flutter velocity suggests that the stochastic aeroelastic response could
be improved in a robust optimisation framework.
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Figure 16: Probability density functions of Vf for the two general orthotropic layups L3 and L4 (solid green and
dashed orange lines, respectively) obtained by the aPC method (with P = 3) based on the uncertain parameter
input of Table 7. The solid black arrow indicates the nominal critical flutter speed, the red dashed arrow is the
classical 15% flutter margin and the blue dash-dotted arrow indicates the 1% percentile for the occurrence of
flutter.

5.6. Optimal configuration and mode switch
We study now configurations which are affected by the mode switch observed in section 4

and visible in Fig. 4. The first configuration corresponds to layup L5, which is located at the
optimum in terms of critical flutter velocity in the orthotropic plane (cfr. Fig. 4 and Tables 5
and 6 for the description of the nominal configuration). Polar moduli RD̃0 and RD̃1 being non-
zero in the nominal configuration, their distributions in Figs. 17(c)-(d) are bell-shaped with the
maximum probability density well centered around their nominal values. However, in both cases
the upper tail of the distribution seems to be slightly longer. The distribution for the principal
stiffness direction ΦD̃1 is centered around 0 [rad] and very peaked (see Fig. 17(f)), while the offset
distribution of ΦD̃0 − ΦD̃1 is distributed at the π

4 limits (see Fig. 17(e)). The split in the angular
difference distribution is only a graphical effect; the angles being periodic, values ±π4 correspond
to the same orthotropic shape and the distribution in Fig. 17(e) is centered on the nominal value
of the difference ΦD̃0 − ΦD̃1 .
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Figure 17: Distributions of the polar parameters for layup L5 (cf. Table 6) obtained by Monte Carlo simulation
based on the uncertainties in ply angles and thickness described in Table 7.
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The distribution of the critical flutter velocity Vf for laminate L5 is obtained by combination
of aPC and machine-learning techniques (refer to Appendix A for a detailed description) and the
result is depicted in Fig. 18.

Based on the previously shown uncertain polar parameters laminate L5, Figure 18 shows the
corresponding distribution of the critical flutter velocity Vf . It clearly shows that the mode switch
is triggered for the configuration at study by fabrication errors on ply angles and thicknesses. In
fact, the distribution has a bimodal shape with one peak which is centered on the nominal value
of Vf (black solid arrow in the figure), and a second peak located at lower values of flow velocity
(roughly in the interval [70, 100] [m/s]). The individual bumps have a higher spread than the
distributions shown for laminates L1-L4, so not only the level of uncertainty is augmented by
the presence of the mode switch, but also the deviations inside the modes appear to be more
important, which is due to the relatively steep and complex behaviour of the response surface
in the vicinity of the discontinuity. We can notice that the discontinuity in the critical flutter
velocity arises even if the random polar parameters are continuous as it is shown in Fig. 10.
Instead, the changes in the stiffness properties cause the mode switch as explained at the end of
Section 4.

In this configuration, it is clear that the classical flutter margin (−15% with respect to the
nominal value of Vf , pointed by the red dashed arrow in Fig. 18) is well above the first peak of
probability density situated at lower values of Vf . This is also very clearly demonstrated by the
1% percentile marker (blue dash-dotted arrow in Fig. 18), which is more than 40 [m/s] below the
classical flutter margin. The stochastic analysis can add security for flutter calculations in this
scenario.
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Figure 18: Probability density function of Vf for the optimal angle-ply laminate L5 obtained by the aPC method
(with P = 3) and machine-learning techniques based on the uncertain parameter input of Table 7. The solid
black arrow indicates the nominal critical flutter speed, the red dashed arrow is the classical 15% flutter margin
and the blue dash-dotted arrow indicates the 1% percentile for the occurrence of flutter.

5.7. Offset from the mode switch
Finally, layup L6 is an example of a laminate affected by the mode switch, but not situated

in the direct vicinity of the discontunuity. Furthermore, as in the case of L3 and L4, L6 is
an additional example of a sequence which is not on the border of the admissible domain of
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Figure 19: Distributions of the polar parameters for layup L6 (cf. Table 6) due to the uncertainties in ply angles
and thickness described in Table 7.

orthotropic laminates and, in particular, it is not a plain angle-ply sequence, but a three-
orientation 0/ ± α laminate (with α = 34◦, see Table 6). We can remark that, keeping the
same sequence, the point which is directly on the mode switch corresponds to the laminate with
α = 35.6◦. This means that the angular offset of laminate L6 from the discontinuity is 1.6◦,
which is higher than the standard deviation in the error distribution of ply angles (see Table 7).

Concerning the distribution of polar parameters, laminate L6 is very close to L5 in the polar
domain, differing mostly in the nominal value of RD̃0 being lower than for L5 (see Fig. 19.c). The
distributions of polar parameters RD̃0 and RD̃1 (see Fig. 19(c)-(d)) do not change much in shape
with respect to the previous case. The distributions are bell shaped, with the main probability
density mass distributed around the nominal values and a slight accent on the upper tail. The
distributions of the associated angles stay narrow (see Fig. 19(e)-(f)).

Even if the fabrication errors defined in Table 7 are limited in spread, they still trigger the
mode switch for layup L6. The corresponding distribution of the critical flutter velocity Vf is
given in Fig. 20 and it shows a bimodal shape, with one bump in the probability density much
less peaked compared to the L5 case. However, the main bump in Fig. 20 does not get narrower
in spread by much, although it gets much steeper. This indicates once more that the uncertainty
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is mainly linked to the modal behaviour and the mode associated to the higher flutter velocities
just receives more samples in this case. Due to the second bump in probability density in the
low-velocity region, the estimate of the 1% quantile (blue dash-dotted arrow in Fig. 20) for the
critical flutter velocity is well below the classical flutter margin (red dashed arrow in the figure).
This indicates that the classical margin does not provide safety against flutter in all relevant
configurations.
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Figure 20: Probability density function of Vf for laminate L6 obtained by the aPC method (with P = 3) based on
the uncertain parameter input of Table 7. The solid black arrow indicates the nominal critical flutter speed, the
red dashed arrow is the classical 15% flutter margin and the blue dash-dotted arrow indicates the 1% percentile
for the occurrence of flutter.

6. Conclusion

In this work, uncertainty propagation in both ply thickness and angular fibre placement of
composite laminates was performed to quantify their effects on the critical flutter velocity of a
rectangular straight cantilevered plate wing, consisting of sixteen composite plies. In contrast
to previous works, a combined study of both uncertainties was carried out without imposing
restrictions on the resulting laminate behaviour, thus fully reflecting the consequences of random
deviations.

Analysis was enabled by use of the polar method, which accurately describes the bending
behaviour of the studied plate wing with only six parameters. In the deterministic analysis of
nominally orthotropic uncoupled laminated wings, the polar method allowed to even further
reduce the dimension of the aeroelastic problem to only two bending polar parameters, thus
giving a synthetic overview of the response surface of flutter critical velocity and highlighting
the main physical phenomena. Particularly, the response surface exhibits a discontinuity which
was found to be due to switching between aeroelastic modes as a consequence of the change in
balance between longitudinal and torsional stiffness moduli. In addition, the optimum laminate
for maximum flutter velocity is identified, which is situated exactly on the upper extremity of
the discontinuity represented in the polar domain. In this case, the polar method is a useful
tool to select significant layup configurations, located at different points of the polar domain, in
order to analyse the influence of elastic symmetries, stacking sequences and mode switches on
the stochastic aeroelastic response. The complexity of the present flutter response surface over
the polar domain clearly demonstrates the need for uncertainty propagation in order to quantify
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the effect of laminates’ fabrication uncertainties in ply angles and thicknesses on the aeroelastic
response of composite wings.

Moreover, the polar method allows to reduce the dimension of the stochastic problem from
2nplies (i.e. twice the number of layers in the laminate, when considering randomness on angles
and thicknesses) to the set θ of only six modified bending polar parameters. It is thus possible
to take into account the effect of elastic coupling arising from fabrication errors without any
restriction on the uncertainty, such as forcing the resymmetrisation of the uncertain layup.

The uncertainty quantification was carried out using an arbitrary polynomial-chaos method
that was adapted to handle the correlated random polar parameters. Moreover, it was augmented
with a discontinuity detection based on machine learning in order to handle the mode switching.
The method significantly reduced the number of calls to the aeroelastic solver by at least two
orders of magnitudes compared to Monte Carlo simulations.

Even if small variabilities on ply angles and thicknesses are considered, coherently with the
reduced tolerances of modern fabrication processes, the study showed that the nominal material
properties of the layup are not preserved. Isotropic as well as anisotropic moduli are affected
by uncertainties, elastic symmetries are lost, and the principal stiffness orientation ΦD̃1 deviates
from its nominal position, i.e. the span axis of the wing. This implies important deviations of
the flutter velocity, which are especially large in the case of layups affected by the mode switch.

We were able to show that uncertainties in ply angles and thicknesses can give bi-modal
distributions of the stochastic flutter velocity also in cases where their nominal layup is not
situated directly on the modal discontinuity. The results of the uncertainty propagation highlight
the need for robust aeroelastic optimisation of composite aeronautical structures, as the deviations
from the nominal configurations easily exceed the classical 15% velocity margin if mode switches
are encountered. Incorporating informations on uncertainties into the design process would thus
provide additional safety, while potentially permitting performance gains in configurations that
are situated in smooth regions.

Appendix A. Uncertainty quantification method

The basic technique of uncertainty quantification is Monte Carlo simulation. It is easy to
implement, because it just requires propagating a number of realisations of the input parameters
through the computational model. However, in order to obtain meaningful statistic results, a high
number of samples is needed, which often renders its computational cost prohibitive. In order
to alleviate the computational burden of Monte Carlo simulation, polynomial chaos approaches
are employed, which we adopted in the present work. In order to reduce the dimension of the
stochastic space to manageable numbers, the polar method is used. To handle the resulting non-
trivial correlated distributions, we employ an adapted polynomial chaos approach by Navarro et
al. [37].

Appendix A.1. Arbitrary Polynomial Chaos (aPC)
Polynomial chaos creates a response surface by using a spectral expansion in the stochastic

space [56]

u(θ) =
M∑
i=1

ûiΦi(θ) (A.1)

where Φi are orthogonal polynomials and ûi are the expansion coefficients by which these
functions are weighted. The function of interest u corresponds in this case to the critical flutter
velocity Vf , and the stochastic parameters θ are the uncertain polar parameters.
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The number of terms M depends on the number of parameters N , and the order of the
polynomials [33]

M = (P +N)!
P !N ! − 1 (A.2)

This number of terms is rapidly increasing with the number of dimensions. The reduction of the
number of dimensions obtained by the use of the polar method is consequently a key to render
polynomial chaos applicable to problems in composite materials.

Originally, polynomial chaos was developed for Gaussian distributions, which uses Hermite
polynomials [28] and then extended to different families of distributions summarised in the
Askey scheme [29]. As the convergence of the method relies mostly on the orthogonality of the
underlying polynomials, Soize and Ghanem [36] proposed an extension to arbitrary probability
measures. However, this was rarely applied to correlated variables. To make the framework
applicable to the correlated polar parameters which moreover has non-trivial distributions, this
work will follow a recent example by Navarro, M.I. et al. [37], where the Gram-Schmidt algorithm
is used to produce an orthogonal basis on correlated variables.

The orthogonality of the polynomials is defined in the sense of a scalar product which is noted
as follows

〈φi, φj〉 =
∫

Θ
φi(θ)φj(θ)p(θ)dθ = E{φi(θ)2}δij (A.3)

In order to orthogonalise the M polynomials with respect to this scalar product, the Gram-
Schmidt algorithm calculates the coefficients of the polynomials using the scalar product itself,
to ensure each polynomial is orthogonal to all of its predecessors [37]

φ0(θ) = 1 (A.4)

φj(θ) = ej(θ)−
j−1∑
k=0

cjkφk(θ) (A.5)

where ej = {1, θ1, θ2, . . . , θ6, θ
2
1, θ1θ2, θ1θ3, . . . }. The coefficients cjk are computed as [37]

cjk = 〈ej(θ), φk(θ)〉
〈φk(θ), φk(θ)〉 (A.6)

where 〈·, ·〉 denotes a polynomial scalar product as defined in Eq. (A.3). In [37] the
coefficients are computed using moment-generating functions. To date, neither an analytical
description of the joint distribution function nor characteristic or moment-generating function
of the joint distribution of the polar parameters are available. Therefore, the necessary integrals
are computed using Monte Carlo integration. Because this does not involve calls to the solver,
but only evaluation of polynomials, this is computationally cheap.

The analytical description of the distribution functions not being available has another
inconvenience. Normally in polynomial chaos expansions, the expansion coefficients are computed
as [33]

ûi = 〈u(θ), φi(θ)〉
〈φi(θ), φi(θ)〉 (A.7)

As the solver would need to be called for every sample, the Monte Carlo integration technique
does not have any point in this case. Instead, the expansion coefficients are fitted using least-
square regression on a random set of points in the parameter space [18].

A summary of the procedure used to calculate the response surface using the Gram-Schmidt
type polynomial chaos is given in Fig. A.21.
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Figure A.21: Flowchart of the response surface construction using arbitrary polynomial chaos with Monte Carlo
integration and least-square fitting of the expansion coefficients

Polynomials of order P = 3 were considered in the present work. The procedure has been
validated in [55] against the test case of [37], where analytical solutions for an example problem
are given. Moreover, for a certain choice of parameters, the input becomes uncorrelated, which
enables further validation of the algorithm in comparison to classical Hermite polynomial chaos
as investigated in [55].

Appendix A.2. Dealing with discontinuities in the response surface
Discontinuities in the flutter response with respect to material behaviour have been observed

[18] which are due to changes in the modal regime. Global polynomial chaos does not perform
well in that case [18]. In this work, we consider a simple solution to this problem consisting in
separating regions of the response surface pertaining to different modal regimes and performing
independent estimates of the response surface by polynomial chaos for each region. Instead of
estimating the convex hulls of the modal regimes in the material parameter space [18], we use a
machine learning-based filtering approach similar to [57] but applied to the arbitrary polynomial
chaos approach described earlier. It has the advantage of being easier to automate and is able to
cope with modal regimes of which the underlying material parameter space is non-convex, and
also provides reasonable estimates for samples that fall outside of the domain covered by the
preliminary sampling.

The combined procedure of machine learning and aPC basically consists of two steps. The
first one is the identification of different modal regimes. In the second step, samples are filtered
according to the information gained in the first step, which serves for the construction of the
polynomials for the different regions of the response surface.

The first step is solved using the DBSCAN clustering algorithm [58], which clusters the
samples by identifying high sample density zones in an environment which has low sampling
density. It is applied on the preliminary samples of Vf and ω obtained by propagation through the
aeroelastic solver, which are used later on for the fitting of the response surface. This procedure
thus avoids additional calls to the aeroelastic solver. We employ the DBSCAN implementation
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from scikit-learn as clustering algorithm [59], where we adjust the maximum core point distance
and set the minimum cluster size to ten samples in order to avoid problems with outliers.

The clustering results, along with the associated polar parameters, are fed as training data
into a classification algorithm. The classification algorithm serves afterwards as a filter to
attribute subsequent samples of the polar parameters to the right region of modal regime. The
filtered samples can then be used for the construction of the polynomials as well as sampling
the reconstructed response surface. We performed the classification step by using the multi-layer
perceptron neural-network classifier with its standard parameters, issued from that same scikit-
learn library. A summary of how the algorithms are employed in the flutter problem is given in
Fig. A.22.

Samples
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(DBSCAN)

Preliminary
samples

Polynomial
construction
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Schmidt,
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Figure A.22: Flowchart showing the use of machine learning for separation of the response surfaces

[1] J. Ashton, M. Waddoups, Analysis of Anisotropic Plates, Journal of Composite Materials
3 (1969) 148–165.

[2] Noor, A. K., Free vibrations of multilayered composite plates., AIAA Journal 11 (1973)
1038–1039.

[3] R. Ramkumar, T. Weisshaar, Flutter of flat rectangular anisotropic plates in high mach
number supersonic flow, Journal of Sound and Vibration 50 (1977) 587–597.

[4] D. J. Mourey, Study of the feasibility aspects of flight testing an aeroelastically tailored
forward swept research wing on a BQM-34F drone vehicle, Contractor Report CR-159149,
National Aeronautics and Space Administration, 1979.

[5] T. A. Weisshaar, Aeroelastic Tailoring of Forward Swept Composite Wings, Journal of
Aircraft 18 (1981) 669–676.

32



[6] T. A. Weisshaar, B. L. Foist, Vibration tailoring of advanced composite lifting surfaces,
Journal of Aircraft 22 (1985) 141–147.

[7] D. Jensen, E. Crawley, J. Dugundji, Vibration of Cantilevered Graphite/Epoxy Plates With
Bending-Torsion Coupling, Journal of Reinforced Plastics and Composites 1 (1982) 254–269.

[8] S. J. Hollowell, J. Dugundji, Aeroelastic flutter and divergence of stiffness coupled,
graphite/epoxy cantilevered plates, Journal of Aircraft 21 (1984) 69–76.

[9] B. Landsberger, J. Dugundji, Aeroelastic behavior of straight and forward swept
graphite/epoxy wings, in: 25th Structures, Structural Dynamics and Materials Conference,
American Institute of Aeronautics and Astronautics, 1984.

[10] B. J. Landsberger, J. Dugundji, Experimental aeroelastic behavior of unswept and forward-
swept cantilever graphite/epoxy wings, Journal of Aircraft 22 (1985) 679–686.

[11] G. I. Schueller, M. Shinozuka, L. Meirovitch, G. Oravas (Eds.), Stochastic Methods in
Structural Dynamics, volume 10 of Mechanics: Dynamical Systems, Springer Netherlands,
Dordrecht, 1987.

[12] S. Sriramula, M. K. Chryssanthopoulos, Quantification of uncertainty modelling in
stochastic analysis of FRP composites, Composites Part A: Applied Science and
Manufacturing 40 (2009) 1673–1684.

[13] C. Gogu, W. Yin, R. Haftka, P. Ifju, J. Molimard, R. Le Riche, A. Vautrin, Bayesian
Identification of Elastic Constants in Multi-Directional Laminate from Moiré Interferometry
Displacement Fields, Experimental Mechanics 53 (2013) 635–648.

[14] K. Sepahvand, M. Scheffler, S. Marburg, Uncertainty quantification in natural frequencies
and radiated acoustic power of composite plates: Analytical and experimental investigation,
Applied Acoustics 87 (2015) 23–29.

[15] K. Sepahvand, S. Marburg, Non-sampling inverse stochastic numerical and experimental
identification of random elastic material parameters in composite plates, Mechanical
Systems and Signal Processing 54-55 (2015) 172–181.

[16] C. L. Pettit, Uncertainty Quantification in Aeroelasticity: Recent Results and Research
Challenges, Journal of Aircraft 41 (2004) 1217–1229.

[17] P. Beran, B. Stanford, C. Schrock, Uncertainty Quantification in Aeroelasticity, Annual
Review of Fluid Mechanics 49 (2017) 361–386.

[18] C. Scarth, J. E. Cooper, P. M. Weaver, G. Silva, Uncertainty quantification of aeroelastic
stability of composite plate wings using lamination parameters, Composite Structures 116
(2014) 84–93.

[19] S. W. Tsai, H. T. Hahn, Introduction to composite materials, Technomic Publ, Lancaster,
Pa., 1980.

[20] G. Verchery, Les invariants des tenseurs d’ordre 4 du type de l’élasticité, in: Comportment
Méchanique des Solides Anisotropes, volume 115, Editions du CNRS, Paris, Villard-de-Lans,
1979, pp. 93–104.

[21] P. Vannucci, Plane Anisotropy by the Polar Method, Meccanica 40 (2005) 437–454.

33



[22] A. Vincenti, M. R. Ahmadian, P. Vannucci, Optimization of laminated composites by using
genetic algorithm and the polar description of plane anisotropy, Mechanics of Advanced
Materials and Structures 20 (2013) 242–255.

[23] A. Jibawy, C. Julien, B. Desmorat, A. Vincenti, F. Léné, Hierarchical structural optimization
of laminated plates using polar representation, International Journal of Solids and Structures
102 (2011) 55–78.

[24] C. Julien, Conception Optimale de l’Anisotropie dans les Structures Stratifiées à Rigidité
Variable par la Méthode Polaire-Génétique, Ph.D. thesis, Sorbonne Universités, Université
Pierre et Marie Curie Paris 6/CNRS, UMR 7190, Paris, 2010.

[25] P. Vannucci, A Note on the Elastic and Geometric Bounds for Composite Laminates,
Journal of Elasticity 112 (2013) 199–215.

[26] M. Montemurro, A. Vincenti, P. Vannucci, A Two-Level Procedure for the Global Optimum
Design of Composite Modular Structures—Application to the Design of an Aircraft Wing.
Part 1: Theoretical Fomrulation, Journal of Optimization Theory and Applications 155
(2012) 24–53. URL: http://link.springer.com/10.1007/s10957-012-0070-1.

[27] M. Montemurro, A. Vincenti, P. Vannucci, A Two-Level Procedure for the Global Optimum
Design of Composite Modular Structures — Application to the Design of an Aircraft Wing:
Part 2: Numerical Aspects and Examples, Journal of Optimization Theory and Applications
155 (2012) 24–53. URL: http://link.springer.com/10.1007/s10957-012-0070-1.

[28] N. Wiener, The Homogeneous Chaos, American Journal of Mathematics 60 (1938) pp.
897–936. URL: http://www.jstor.org/stable/2371268.

[29] D. Xiu, G. E. Karniadakis, The Wiener–Askey Polynomial Chaos for Stochastic Differential
Equations, SIAM Journal on Scientific Computing 24 (2002) 619–644.

[30] D. Xiu, G. E. Karniadakis, Modeling uncertainty in steady state diffusion problems via
generalized polynomial chaos, Computer Methods in Applied Mechanics and Engineering
191 (2002) 4927–4948.

[31] D. Lucor, D. Xiu, C.-H. Su, G. E. Karniadakis, Predictability and uncertainty in cfd,
International Journal for Numerical Methods in Fluids 43 (2003) 483–505.

[32] D. Xiu, D. Lucor, C.-H. Su, G. E. Karniadakis, Stochastic Modeling of Flow-Structure
Interactions Using Generalized Polynomial Chaos, Journal of Fluids Engineering 124 (2002)
51.

[33] J. Le Meitour, D. Lucor, J.-C. Chassaing, Prediction of stochastic limit cycle oscillations
using an adaptive Polynomial Chaos method, Journal of Aeroelasticity and Structural
Dynamics 2 (2010) 1–20.

[34] M. Thapa, S. B. Mulani, R. W. Walters, A new non-intrusive polynomial chaos using higher
order sensitivities, Computer Methods in Applied Mechanics and Engineering 328 (2018)
594–611.

[35] L. Mathelin, M. Y. Hussaini, T. A. Zang, Stochastic approaches to uncertainty quantification
in CFD simulations, Numerical Algorithms 38 (2005) 209–236.

34

http://link.springer.com/10.1007/s10957-012-0070-1
http://link.springer.com/10.1007/s10957-012-0070-1
http://www.jstor.org/stable/2371268


[36] C. Soize, R. Ghanem, Physical Systems with Random Uncertainties: Chaos Representations
with Arbitrary Probability Measure, SIAM Journal on Scientific Computing 26 (2004) 395–
410.

[37] Navarro, M.I., Witteveen, J.A.S., Blom, J.G., Polynomial Chaos Expansion for general
multivariate distributions with correlated variables, Technical Report, CentrumWiskunde &
Informatica, 2014. URL: https://repository.cwi.nl/noauth/search/fullrecord.php?
publnr=22484.

[38] S. Dey, T. Mukhopadhyay, H. H. Khodaparast, S. Adhikari, Fuzzy uncertainty propagation
in composites using Gram–Schmidt polynomial chaos expansion, Applied Mathematical
Modelling 40 (2016) 4412–4428.

[39] K. Sepahvand, Spectral stochastic finite element vibration analysis of fiber-reinforced
composites with random fiber orientation, Composite Structures 145 (2016) 119 –
128. URL: http://www.sciencedirect.com/science/article/pii/S0263822316301106.
doi:https://doi.org/10.1016/j.compstruct.2016.02.069.

[40] O. Stodieck, J. E. Cooper, P. M. Weaver, P. Kealy, Improved aeroelastic tailoring using tow-
steered composites, Composite Structures 106 (2013) 703–715. URL: http://linkinghub.
elsevier.com/retrieve/pii/S0263822313003462.

[41] W. Stein, A summary of Classical Lamination Theory, 2010. URL: http:
//wstein.org/edu/2010/480b/projects/05-lamination_theory/A%20summary%20of%
20Classical%20Lamination%20Theory.pdf, retrieved on February 25th, 2015.

[42] M. D. Minich, C. C. Chamis, Analytical displacements and vibrations of cantilevered
unsymmetric fiber composite laminates, in: AIAA, ASME, and SAE, Structures, Structural
Dynamics, and Materials Conference, Denver, Colorado, 1975.

[43] A. W. Leissa, The free vibration of rectangular plates, Journal of Sound and Vibration 31
(1973) 257–293.

[44] J. R. Wright, J. E. Cooper, Introduction to aircraft aeroelasticity and loads, 2. ed ed., Wiley,
Chichester, 2015.

[45] J. N. Reddy, Theory and analysis of elastic plates, Taylor & Francis, Philadelphia, PA, 1999.

[46] Z. Gurdal, R. Haftka, P. Hajela, Design and optimization of laminated composite materials,
Wiley, New York, 1999.

[47] H. Ghiasi, D. Pasini, L. Lessard, Optimum stacking sequence design of composite materials
part i: constant stiffness design, Composite Structures 90 (2009) 1–11.

[48] H. Ghiasi, D. Pasini, L. Lessard, Optimum stacking sequence design of composite materials
part ii: variable stiffness design, Composite Structures 93 (2010) 1–13.

[49] P. Vannucci, A Special Planar Orthotropic Material, Journal of elasticity and the physical
science of solids 67 (2002) 81–96.

[50] U.S. Department of Defense, COMPOSITE MATERIALS HANDBOOK, U.S. Department
of Defense, 2002.

35

https://repository.cwi.nl/noauth/search/fullrecord.php?publnr=22484
https://repository.cwi.nl/noauth/search/fullrecord.php?publnr=22484
http://www.sciencedirect.com/science/article/pii/S0263822316301106
http://dx.doi.org/https://doi.org/10.1016/j.compstruct.2016.02.069
http://linkinghub.elsevier.com/retrieve/pii/S0263822313003462
http://linkinghub.elsevier.com/retrieve/pii/S0263822313003462
http://wstein.org/edu/2010/480b/projects/05-lamination_theory/A%20summary%20of%20Classical%20Lamination%20Theory.pdf
http://wstein.org/edu/2010/480b/projects/05-lamination_theory/A%20summary%20of%20Classical%20Lamination%20Theory.pdf
http://wstein.org/edu/2010/480b/projects/05-lamination_theory/A%20summary%20of%20Classical%20Lamination%20Theory.pdf


[51] S. J. Hollowell, Aeroelastic flutter and divergence of graphite/epoxy cantilevered plates with
bending-torsion stiffness coupling, Master’s thesis, Massachusetts Institute of Technology,
Dept. of Aeronautics and Astronautics, 1981.

[52] J. A. Witteveen, S. Sarkar, H. Bijl, Modeling physical uncertainties in dynamic
stall induced fluid–structure interaction of turbine blades using arbitrary polynomial
chaos, Computers and Structures 85 (2007) 866 – 878. URL: http://www.
sciencedirect.com/science/article/pii/S0045794907000168. doi:https://doi.org/
10.1016/j.compstruc.2007.01.004, fourth MIT Conference on Computational Fluid and
Solid Mechanics.

[53] S. Oladyshkin, W. Nowak, Data-driven uncertainty quantification using the arbitrary
polynomial chaos expansion, Reliability Engineering and System Safety 106 (2012) 179 –
190. URL: http://www.sciencedirect.com/science/article/pii/S0951832012000853.
doi:https://doi.org/10.1016/j.ress.2012.05.002.

[54] J. A. Paulson, E. A. Buehler, A. Mesbah, Arbitrary polynomial chaos for uncertainty
propagation of correlated random variables in dynamic systems, IFAC-PapersOnLine
50 (2017) 3548 – 3553. URL: http://www.sciencedirect.com/science/article/pii/
S240589631731426X. doi:https://doi.org/10.1016/j.ifacol.2017.08.954, 20th IFAC
World Congress.

[55] C. T. Nitschke, Quantification of aleatory and epistemic uncertainties in the prediction
of aeroelastic instabilities, Ph.D. thesis, Sorbonne Universités, Institut Jean Le Rond
d’Alembert, CNRS UMR 7190, Paris, 2018.

[56] D. Lucor, Introduction to Uncertainty Quantification in Computational Fluid Dynamics,
2012. Lecture Notes of NSE22 2012, held at Université Pierre et Marie Curie Paris 6.

[57] C. Scarth, P. N. Sartor, J. E. Cooper, P. M. Weaver, G. H. C. Silva, Robust and Reliability-
Based Aeroelastic Design of Composite Plate Wings, AIAA Journal 55 (2017) 3539–3552.

[58] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters
in large spatial databases with noise., in: Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining, volume 96, 1996, pp. 226–231.

[59] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine Learning in Python, Journal
of Machine Learning Research 12 (2011) 2825–2830.

36

http://www.sciencedirect.com/science/article/pii/S0045794907000168
http://www.sciencedirect.com/science/article/pii/S0045794907000168
http://dx.doi.org/https://doi.org/10.1016/j.compstruc.2007.01.004
http://dx.doi.org/https://doi.org/10.1016/j.compstruc.2007.01.004
http://www.sciencedirect.com/science/article/pii/S0951832012000853
http://dx.doi.org/https://doi.org/10.1016/j.ress.2012.05.002
http://www.sciencedirect.com/science/article/pii/S240589631731426X
http://www.sciencedirect.com/science/article/pii/S240589631731426X
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2017.08.954

	Introduction
	Aeroelastic Problem
	The Polar Method
	Deterministic analysis of the aeroelastic response
	Uncertainty propagation
	blueUncertainty modeling
	blueNon-intrusive stochastic solver 
	Square-symmetric layup L1
	R0-orthotropic layup L2
	Influence of the layup sequence on uncertainties
	Optimal configuration and mode switch
	Offset from the mode switch

	Conclusion
	Uncertainty quantification method
	Arbitrary Polynomial Chaos (aPC)
	Dealing with discontinuities in the response surface


