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Highlights

• A numerical method to compute 3D global perturbations developing in 2D compressible, fully non-parallel baseflows is proposed. This
method is based on a finite-difference approximation of the Jacobian matrix.

• The largest singular value and the associated singular vectors of the global resolvent matrix are computed to recover the optimal forcing
and response of the supersonic boundary layer at M = 4.5.

• The first and second mode instabilities as well as the non-modal growth of streaks are identified as optimal responses.
• The analysis of their energy profiles reveals the role of the generalised inflection point and the region of supersonic relative Mach

number.
• Characterising the 3D dynamics of 2D complex compressible flows and developing flow control strategies of 3D compressible instabil-

ities are promising perspectives.
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Abstract6

3D optimal forcing and response of a 2D supersonic boundary layer are obtained by computing7

the largest singular value and the associated singular vectors of the global resolvent matrix. This8

approach allows to take into account both convective-type and component-type non-normalities9

responsible for the non-modal growth of perturbations in noise selective amplifier flows. It is more-10

over a fully non-parallel approach that does not require any particular assumptions on the baseflow.11

The numerical method is based on the explicit calculation of the Jacobian matrix proposed by Met-12

tot et al. [1] for 2D perturbations. This strategy uses the numerical residual of the compressible13

Navier-Stokes equations imported from a finite-volume solver that is then linearised employing a14

finite difference method. Extension to 3D perturbations, which are expanded into modes of wave15

number, is here proposed by decomposing the Jacobian matrix according to the direction of the16

derivatives contained in its coefficients. Validation is performed on a Blasius boundary layer and17

a supersonic boundary layer, in comparison respectively to global and local results. Application of18

the method to a boundary layer at M = 4.5 recovers three regions of receptivity in the frequency-19

transverse wave number space. Finally, the energy growth of each optimal response is studied and20

discussed.21

Keywords: Optimal forcing, global resolvent, convective instability, non-modal instability,22

compressible boundary layer23

Nomenclature24

M Mach number25

Pr Prandtl number26

Re Reynolds number27

x Streamwise direction28

y Normal to the wall direction29
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z Transverse direction, supposed as homogeneous30

R Residual of Navier-Stokes equations31

F Flux of Navier-Stokes equations along x-direction32

G Flux of Navier-Stokes equations along y-direction33

H Flux of Navier-Stokes equations along z-direction34

q Vector of conservative variables (ρ , ρu , ρv , ρE)T35

u Streamwise velocity36

v Normal velocity37

w Transverse velocity38

ρ Density39

c Speed of sound40

E Total energy41

e Internal energy42

p Pressure43

T Temperature44

M̂ Relative Mach number45

η Dynamic viscosity46

γ Heat capacity ratio47

κ Thermal conductivity48

cp Heat capacity49

∞ Far-field quantities50

αr Streamwise wavenumber51

β Transverse wavenumber52

ω Angular frequency53

Ψ Angle between the wave vector of the perturbation and the baseflow direction54

cϕ Phase velocity55

μ Optimal gain56

f̃ Forcing vector (in particular, optimal forcing vector)57

2



q̃ Perturbations vector (in particular, optimal response vector)58

fx Streamwise forcing59

fy Normal forcing60

fz Transverse forcing61

J Jacobian matrix62

R Resolvent matrix63

QE Norm matrix associated with the energy of the perturbations64

QF Norm matrix associated with the forcing field65

dChu Chu’s energy density profile66

dF Forcing density profile67

yChu
m Ordinate where Chu’s energy is maximum68

yK
m Ordinate where the kinetic energy is maximum69

δ∗ Boundary layer compressible displacement thickness70


 Blasius length
√

η∞x/ρ∞u∞71
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1. Introduction72

Depending on their dynamics, open flows can be divided into oscillator and noise selective73

amplifiers [2]. Whereas the first ones have an intrinsic dynamics related to the physical parameters74

of the baseflow, the second ones only amplify perturbations in specific ranges of frequencies, which75

grow in space and advected downstream. In terms of stability analysis, these considerations lead to76

distinguish absolute from convective instabilities. Local stability analysis [3] have extensively been77

employed to study the dynamics of various open flows (boundary layer [4], wakes [5], jet flows [6],78

etc.). This approach allows, in particular, to discriminate absolute and convective instabilities by79

computing the growth rate of zero group velocity waves [7]. The assumption of a (weakly) parallel80

baseflow is however required in order to expand perturbations into Fourier-Laplace modes along81

the streamwise direction.82

Focusing on the convectively unstable compressible boundary layer, first stability computations83

were based on a local approach [8, 9, 10]. Along with theoretical developments [11], these seminal84

studies established the main features of compressible instabilities, especially noting their inviscid85

nature caused by the existence of a generalised inflection point and the prevailing growth of 3D86

perturbations (Squire theorem [12] does not hold for compressible flows [9]). Later, local stability87

analysis allowed to suggest the existence of an additional unstable mode [13] (generally referred to88

as second mode, or Mack mode) in the case of sufficiently high supersonic Mach numbers (M∞ ≥89

3.8), soon confirmed by experimental work [14, 15]. Afterwards, more sophisticated local stability90

analysis taking into account the weak non-parallel effects produced more accurate results [16, 17].91

Following the work of Farrell [18] for incompressible flows, several local analysis then focused on92

computing non-modal growth for compressible boundary layer. Optimal growth in a temporal93

formulation was first proposed by Hanifi et al. [19] who were able to observe the non-modal growth94

of compressible streaks. A spatial version of this analysis was suggested by Tumin and Reshotko95

[20], afterwards improved by considering non-parallel effects [21, 22] and 3D baseflows [23]. These96

approaches were coupled with a PSE method [24], resulting in a more general framework to study97

non-modal growth in weakly non-parallel flows [25, 26]. However, these approaches can not be98

considered as universal as it does not allow to study fully non-parallel flows.99

With the increase of computational resources, global stability analysis (in the sense of Theofilis100

[27]) became affordable. In this framework, the streamwise direction is solved as an eigen-direction101

which authorise to consider fully non-parallel baseflows. It offers a relevant tool to study globally102

unstable flows such as the bifurcations occurring in cavity flows [28] and shock wave/boundary layer103

interactions [29] or the onset of the transonic buffet on an airfoil [30]). Global stability analysis104

is however not suited to describe the dynamics of convectively unstable flows, which are globally105

stable. Instead, characterising the response of these flows subject to an external forcing constitutes106

a more relevant analysis as it is directly related to their noise amplifier nature [31]. In practice, this107

approach is related to the resolvent operator and an optimisation framework is employed to compute108

the optimal forcing and response for different frequencies. Such an analysis was first implemented109

for an incompressible boundary layer by performing a projection of the response onto a restricted110

number of global modes [32, 33]. Another strategy was afterwards developed by Monokrousos111

et al. [34] using a time-stepping technique associated with an adjoint-based optimisation method.112

More recently, Sipp and Marquet [35] suggested to solve a singular value problem associated with113

the global resolvent operator and showed that, additionally, the left and right singular vectors114

constituted an orthonormal basis onto which the forcing and response fields could be expanded.115

Besides, it should be pointed out that these optimal response and forcing approaches are non-modal116
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in nature. Indeed, the optimal response resulting from an optimisation problem can be seen as a117

superposition of global modes : both modal resonance and non-modal pseudo-resonance are thus118

taken into account [36]. These non-modal effects are a consequence of two types of non-normalities,119

associated with the non-normal nature of the linearised Navier-Stokes equations [37, 38]. On the120

one hand, the convective-type non-normality (the term
(
ρU · ∇

)
u′ in the linearized momentum121

equation), ubiquitous in convectively unstable flows, stems from the advection of perturbations by122

the baseflow. It was furthermore observed to cause a spatial separation of the forcing and response123

fields, respectively upstream and downstream [35]. On the other hand, the component-type or124

lift-up non-normality (the term (ρu′ · ∇) U in the linearized momentum equation) is caused by the125

transport of baseflow momentum by the perturbations. It was shown to produce component-wise126

transfer of energy between the forcing and response fields as in the case of the lift-up mechanism127

[39] or the Orr mechanism [40].128

In compressible flows, a global approach taking into account non-modal effects was first im-129

plemented for jet flows as an optimal growth problem where an optimal initial conditions were130

looked for [41, 42]. Global optimal forcing based on resolvent computation was then developed and131

applied to the receptivity of a turbulent shock wave/boundary layer interaction [43]. However, to132

our knowledge, no work dealing with non-modal growth of 3D global perturbations in compressible133

flows has been published to date. Given that 3D convective instabilities are especially prevailing134

in this regime, an efficient numerical framework appears to be missing to tackle this problem.135

In this paper, we propose a numerical method to study 3D global linear perturbations developing136

in convectively unstable, fully non-parallel, compressible 2D baseflows. This approach is based on137

the computation of the optimal gain and the associated optimal forcing and response, which is138

achieved by solving a singular value problem associated with the global resolvent operator [35]. The139

explicit numerical computation of the Jacobian matrix - the first step of the numerical method - uses140

the discrete framework presented by Mettot et al. [1] which is here extended to 3D perturbation.141

This point constitutes the main original point of the present work and the mathematical derivation142

will be fully detailed. An application to the 3D receptivity of the supersonic boundary layer at143

M = 4.5 is presented in order to demonstrate the potential of the method.144

The paper is organised as follows. Governing equations and the theoretical approach involved145

in optimal gain computations are introduced in section 2. The numerical framework is developed146

in section 3, especially emphasising the computation of the 3D Jacobian matrix (section 3.3).147

Validation of the numerical framework is given in section 4. Finally, a detailed study of the 3D148

receptivity of the supersonic boundary layer is presented in section 5.149

2. Theoretical approach150

2.1. Governing equations151

The flow is governed by the compressible Navier-Stokes equations. Variables are made non-152

dimensional according to153

x̃ = x
L

, t̃ = t

L/u∞
, ρ̃ = ρ

ρ∞
, ũ = u

u∞

p̃ = p

ρ∞u2∞
, T̃ = T

T∞
, Ẽ = E

u2∞
, η̃ = η

η∞
, λ̃ = λ

λ∞

(1)
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In the following, the ∼ symbol will be dropped in order to lighten notations. The ∞ sym-154

bol refers to far-field quantities. Conservative variables q = [ρ, ρu, ρE]T are used, where ρ,155

u = (u, v, w)T and E respectively are the fluid density, the velocity vector and the total energy.156

T , p, η and λ respectively stand for temperature, pressure, dynamic viscosity and thermal con-157

ductivity. The reference length L may refer to the compressible boundary layer thickness δ∗ or to158

the Blasius length 
 =
√

η∞x/ρ∞u∞. Non-dimensional Reynolds Re, Mach M and Prandtl Pr159

numbers are introduced as160

Re = ρ∞u∞L

η∞
, M = u∞

c∞
, P r = η∞cp

λ∞
(2)

where c is the speed of sound and cp is the heat capacity of the flow. The compressible Navier-Stokes161

equations can then be written as162

∂ρ

∂t
+ ∇ · (ρu) = 0, (3a)

∂

∂t
(ρu) + ∇ ·

[
ρu ⊗ u + pI − 1

Re
τ

]
= 0, (3b)

∂

∂t
(ρE) + ∇ ·

[
(ρE + p) u − 1

Re
τ � u − λ

PrRe(γ − 1)M2 ∇T

]
= 0 (3c)

163

For a thermally and calorically perfect gas, the non-dimensional pressure p and total energy E can164

moreover be expressed according to165

p = 1
γM2∞

ρT , E = p

ρ(γ − 1) + 1
2u · u (4)

The viscous stress tensor of a Newtonian fluid is given by166

τ = η

[
∇ ⊗ u + (∇ ⊗ u)T − 2

3 (∇ · u) I
]

(5)

The dynamic viscosity is a function of temperature and is described by Sutherland’s law [44]167

η(T ) = T 3/2 1 + Ts/T∞
T + Ts/T∞

, (6)

where Ts = 110.4 K and T∞ = 288K. The thermal conductivity coefficient also depends on the168

temperature in the same way as dynamic viscosity does (λ(T ) ∼ η(T ) [45]). Hence it leads to λ = η169

as non-dimensional variables are used.170

In the following, equations (3) can be recast in the dynamical system form171

∂q
∂t

= R(q), (7)

where R is the differential nonlinear operator of Navier-Stokes equations.172

2.2. Linear dynamics173

This study aims to study the forced dynamics of 3D perturbations q′(x, y, z, t) added to a 2D174

baseflow q(x, y). The latter is a solution of the steady nonlinear compressible Navier-Stokes equa-175
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tions (3). Considering small amplitude perturbations and introducing a forcing term f ′(x, y, z, t),176

the governing equation of the perturbations is linear and written as177

∂q′

∂t
= J q′ + f ′ (8)

where J = ∂R/∂q|q is the Jacobian operator. The numerical computation of the Jacobian178

matrix will be described in section 3.3. In equation (8), the perturbations q′ can now be seen as179

the response of the flow to the external forcing f ′. As z-direction is supposed to be homogeneous,180

these fields are expanded into Fourier modes of wave number β. Moreover, considering a harmonic181

forcing at frequency ω, these quantities are finally written as182

q′(x, y, z, t) = q̃(x, y)ei(βz+ωt) + c.c. (9)
f ′(x, y, z, t) = f̃(x, y)ei(βz+ωt) + c.c. (10)

Equation (8) can then be recast as183

q̃ = R f̃ (11)

where R = (iωI − J )−1 is the global resolvent operator (with I the identity operator) which184

depends both on the forcing frequency ω and the transverse wave number β. For globally stable185

flows, all eigenvalues of the Jacobian operator have a strictly negative real part. Thus, the resolvent186

operator is well defined and allows to study the forced dynamics of the flow by providing a relation187

between response and forcing fields. Optimal gain is now introduced and defined as the maximum188

ratio between the energy of the perturbations and the forcing. Formally, its expression reads189

μ2 = sup
f̃

||q̃||2E
||f̃ ||2F

(12)

where the energy norms ||.||E and ||.||F and the numerical computation of equation (12) will be190

described in section 3.5.191

3. Numerical strategy192

3.1. Compressible Navier-Stokes solver193

The baseflow is computed by means of a finite volume CFD solver as a steady solution of194

the nonlinear equations (3). Spatial discretisation of convective fluxes is performed using AUSM+195

scheme [46] associated with a fifth-order MUSCL extrapolation [47]. Viscous fluxes at cell interfaces196

are obtained by a second-order centered finite difference scheme. The unsteady equations are197

marched in time until a steady state is reached. An implicit dual time stepping method with198

local time step is used [48]. This solver showed successful results in shock wave/boundary layer199

interaction computations [47]. In the present work, boundary layer baseflows are computed in a200

rectangular numerical domain (fig. 1). A cartesian mesh is set with a geometrical progression201

from the wall. Boundary conditions are gathered in table 1. Dirichlet and Neumann conditions are202

employed as only stationary solutions are computed. Besides, note that an adiabatic flate plate203

is considered. The length Lx0 upstream from the leading edge (see fig. 1) is set to zero when204

supersonic flow are considered. In subsonic computations, this length is set so that results do205
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not depend on its value. Independence from the height Ly of the domain is also checked in every206

baseflow and optimal gain computations. Validation of this solver for the case of a supersonic207

boundary layer at M = 4 is provided in section 4.1.208

�

Figure 1: Numerical domain

Boundary Supersonic conditions Subsonic conditions

1 u = 1, v = 0, ρ = 1, p = 1
(γM2) u = 1, v = 0, ρ = 1, ∂p

∂x
= 0

2 ∂u

∂y
= 0, ∂v

∂y
= 0, ∂ρ

∂y
= 0, p = 1

(γM2)
∂u

∂y
= 0, ∂v

∂y
= 0, ∂ρ

∂y
= 0, p = 1

(γM2)

3 ∂u

∂x
= 0, ∂v

∂x
= 0, ∂ρ

∂x
= 0, ∂p

∂x
= 0 ∂u

∂x
= 0, ∂v

∂x
= 0, ∂ρ

∂x
= 0, p = 1

(γM2)

4 u = 0, v = 0, ∂ρ

∂y
= 0, ∂p

∂y
= 0 u = 0, v = 0, ∂ρ

∂y
= 0, ∂p

∂y
= 0

5 ∂u

∂y
= 0, v = 0, ∂ρ

∂y
= 0, ∂p

∂y
= 0 ∂u

∂y
= 0, v = 0, ∂ρ

∂y
= 0, ∂p

∂y
= 0

Table 1: Boundary conditions used in baseflow computations

3.2. Computation of the Jacobian matrix for 2D perturbations209

Before presenting the numerical strategy to compute the Jacobian matrix for 3D perturbations210

in section 3.3, the case of 2D perturbations q′(x, y, z, t) = q̃(x, y)eiωt + c.c. is first considered.211

Indeed, the former is actually an extension of the latter that was presented by Mettot [49]. The212

method is based on the linearisation of the 2D discretised equations. When dealing with com-213

pressible flows, provided that one owns a nonlinear CFD solver, this method allows to bypass214

the tedious linearisation and then discretisation of the compressible Navier-Stokes equations, thus215

reducing the risk of errors. Moreover, if one wants to compute adjoint quantities, working in a216

discretised framework may be more convenient [49].217

From the discretisation of the system (7), whose dimension is N ∈ N, the residual R ∈ R
N218

of the 2D nonlinear Navier-Stokes equations is used to perform a first-order approximation of the219

Jacobian matrix as220
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J v = R(q + εv) − R(q)
ε

+ O(ε) (13)

Here, q ∈ R
N is the vector of conservative variables associated with the baseflow, v ∈ R

N is an221

arbitrary vector and ε ∈ R is a numerical parameter. The vector v is carefully chosen so that the222

coefficients of the matrix J can be conveniently recovered [49]. A simple approach consists in223

setting to zero every component of v except the k-component that is set to 1 (here, k ∈ [1, N ]).224

Then, equation (13) allows to get every coefficient of the k-column of the matrix J . Repeating225

this procedure N times, the whole matrix is recovered. Moreover, it is possible to take advantage226

from the block diagonal structure of J in order to speed up the method. As described by Mettot227

[49], the vector v can be filled with more than one component equal to 1. This leads to reduce228

the number of calls to equation (13) by approximatively 100. This efficiency actually depends on229

the order of the numerical scheme and on the proportion of points in the normal and streamwise230

direction. As an example, computing the matrix J when N = 600000 using a 1500 × 100 mesh231

and a third order accurate scheme takes approximatively 5 minutes (on CPU : Intel Xeon(R) CPU232

E5-2630 v2 @ 2.60GHz). As for the choice of ε value, its order of magnitude has to be small233

enough so that second order terms can neglected but need to be high enough to avoid numerical234

round-off errors. If the vector v contains only one non-zero element located at the k-component,235

Knoll and Keyes [50] suggest to chose ε = b(1 + |qk|), where b is the square root of the machine236

precision. If v contains multiple non-zero components, then an average of this expression can be237

used. However, in practice, setting a fixed value of ε between 10−6 and 10−8 was observed to be a238

robust choice, probably thanks to the use of nondimensional quantities [50].239

3.3. Extension to 3D perturbations240

The method employed to compute a Jacobian matrix in a discretised-then-linearised framework241

presented in the previous section is now extended to 3D perturbations q′(x, y, z, t) = q̃(x, y)ei(βz+ωt).242

In the present work, the baseflow is supposed to be homogeneous in the z-direction so that243

∀(x, y) ∈ V ,
∂q
∂z

= 0 and w = 0 (14)

where V is the computational domain. The proposed approach lies in the use of 3D Navier-Stokes244

residual (provided by a finite-volume solver) to perform the first-order approximation in equation245

(13). However, the z-direction must now be treated as a Fourier direction, which forbids the direct246

use of this approximation because transverse derivatives ∂/∂z must be turned into iβ terms. In247

order to apply a special treatment in this direction, let us first write equation (3) with fluxes as248

∂q
∂t

= R(q) = −∂F
∂x

− ∂G
∂y

− ∂H
∂z

(15)

where each flux term is now separated in two parts as follows249

F = F′ − Fνz (16)
G = G′ − Gνz (17)
H = H′ − Hνz (18)

9



The part with subscript νz includes every transverse derivatives ∂/∂z, which are only of viscous250

nature. The other part (superscript ′) contains the remaining terms. Explicit expressions of these251

fluxes are given in Appendix A. The Jacobian matrix is finally separated into three different252

matrices as253

J = J ′
F,G + J ′

H + Jνz (19)

where254

J ′
F,G = ∂

∂q

[
−

(
∂F′

∂x
+ ∂G′

∂y

)]
q

(20)

J ′
H = ∂

∂q

[
−∂H′

∂z

]
q

(21)

Jνz = ∂

∂q

[
∂Fνz

∂x
+ ∂Gνz

∂y
+ ∂Hνz

∂z

]
q

(22)

Each matrix is then numerically computed by a specific method that is detailed in the following255

subsections.256

3.3.1. Computation of J ′
F,G257

No transverse derivative is involved in the computation of J ′
F,G in equation (20). Therefore,258

equation (13) can be straightforwardly used by introducing R′
F,G = −∂F′/∂x − ∂G′/∂y. The259

Jacobian matrix J ′
F,G is thus computed according to260

J ′
F,Gv =

R′
F,G(q + εv) − R′

F,G(q)
ε

(23)

3.3.2. Computation of J ′
H261

The computation of J ′
H is achieved by firstly reconsidering the following linearisation262

J ′
Hq′ = −∂H′(q + q′)

∂z
+ ∂H′(q)

∂z
(24)

where a first order expansion of H′(q + q′) in the first right hand term gives263

J ′
Hq′ = − ∂

∂z

[
H′(q) + ∂H′

∂q

∣∣∣∣
q

q′
]

+ ∂H′(q)
∂z

(25)

Finally, the following expression remains264

J ′
Hq′ = − ∂

∂z

[
∂H′

∂q

∣∣∣∣
q

q′
]

(26)

Here, ∂H′/∂q|q does not depend on z as assumed in equation (14). And since ∂q′/∂z = iβq′,265

equation (26) now reads266

J ′
Hq′ = −iβ

∂H′

∂q

∣∣∣∣
q

q′ (27)

10



The expression of J ′
H is finally identified as267

J ′
H = −iβ

∂H′

∂q

∣∣∣∣
q

(28)

Again, the numerical computation of ∂H′/∂q|q is based on a first-order finite difference approx-268

imation. However, note that the numerical flux H′ is here used instead of the flux divergence269

that was previously needed in equation (13) and (23). Hence, the matrix J ′
H is numerically built270

according to271

J ′
Hv = −iβ

H′(q + εv) − H′(q)
ε

(29)

3.3.3. Computation of J ′
νz272

Because every flux term now contains a transverse derivative, a particular care is required273

to compute the matrix J ′
νz. It is not simply possible to replace each ∂/∂z into iβ within the274

fluxes Fνz, Gνz and Hνz. Indeed, spurious non-zero terms associated with the baseflow derivative275

along z would appear, thus violating the assumptions made in equations (14). To get around this276

problem, it can be observed that because of equations (14), the perturbations q̃ only appears under277

z-derivatives in the final linearised equations. For example, introducing the linearisation operator278

L , linearising the fourth component of the vector Fνz (see Appendix A) reads279

L ( η

Re

∂u

∂z
) = η

Re

∂ũ

∂z
= iβ

η

Re
ũ (30)

Anticipating the final result of linearisation, we here suggest to modify the fluxes Fνz, Gνz and280

Hνz into F̂νz, Ĝνz and Ĥνz in which every factor in front of a z-derivative is set to the baseflow281

value and each ∂/∂z is turned into iβ (which will appear as a factor in the final expression of the282

Jacobian matrix). To illustrate this procedure, let us take the example of Fνz (see Appendix B283

for exhaustive expressions of the modified fluxes)284

Fνz =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−2
3

η
Re

∂w
∂z

0
η

Re
∂u
∂z

η
Re

[
−u2

3
∂w
∂z + w ∂u

∂z

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→ F̂νz =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−2
3

η
Rew

0
η

Reu

η
Re

[
−u2

3w + wu
]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(31)

The matrix J ′
νz is finally computed using the approaches presented in section 3.3.1 for F̂νz and285

Ĝνz and in section 3.3.2 for Ĥνz. Introducing286

R̂νz = ∂F̂νz

∂x
+ ∂Ĝνz

∂y
, (32)

the final practical expression to compute J ′
νz reads287

J ′
νzv = iβ

R̂νz(q + εv) − R̂νz(q)
ε

− β2 Ĥνz(q + εv) − Ĥνz(q)
ε

(33)
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3.4. Conclusion about 3D extension288

It should finally be noted that the numerical implementation of the 3D extension from the289

2D method is straightforward, provided that 3D Navier-Stokes residual is available. Indeed, 3D290

extension needs minor modifications of the numerical fluxes but recovering the coefficients of the291

Jacobian matrix, which constitutes the main effort of numerical implementation (see section 3.2),292

is achieved by directly using the 2D computation routine. Here is a summary of the main steps to293

compute the 3D Jacobian matrix from an already implemented 2D method (aside from redefinitions294

of numerical arrays to take into account the additional transverse momentum component).295

1. Import 3D Navier-Stokes residual routines.296

2. Modify the fluxes within theses routines according to Appendix B.297

3. Using equations (23), (29) and (33), compute298

J v = J ′
F,Gv + J ′

Hv + J ′
νzv (34)

4. Recover the coefficients using the method presented in section 3.2.299

It should be finally pointed out that additional computational costs, in terms of random-access300

memory, is kept affordable compare to the 2D method (in practice, a 50% increase tends to be301

observed). Indeed, introducing a fifth component (transverse velocity) automatically increases302

the storage, but because a Fourier expansion is used in the transverse direction, no discretisation303

is performed in this direction. Conversely, implementing a fully 3D method (necessary for 3D304

baseflows) would dramatically increase computations costs. Indeed, the number of coefficients305

in the Jacobian matrix would increase linearly with the number of points Nz in the transverse306

direction. Worst, the storage needed to solve the linear systems that will be introduced in section307

3.5 would scale as N2
z . If it seems today possible to achieve such computations using large clusters308

and limited numbers of points, the method presented in this paper offers a significantly more309

efficient way to compute 3D perturbations when considering 2D baseflows.310

3.5. Optimal forcing and response computation311

This section presents the numerical approach proposed by [35] to compute the optimal gain312

defined in equation (12) and the associated optimal forcing and response fields f̃(x, y) and q̃(x, y).313

The resolvent matrix R is involved in this problem and first requires the computation of the314

Jacobian matrix introduced in the previous section. Note that the explicit construction of R will315

not be required since linear systems involving R−1 will be solved.316

Equation (12) is an optimisation problem on the function μ(f̃) which depends on energy norms.317

These norms are associated with discrete scalar products that can be expressed by norm matrices318

as319

||q̃||2E =< q̃, q̃ >E= q̃∗QEq̃ (35)
||f̃ ||2F =< f̃ , f̃ >F = f̃∗QF f̃ (36)

where ∗ stands for the transconjugate operator. The choice of QE in equation (35) is related to320

the energy of the perturbations that one wants to optimise. For incompressible flows, considering321

the kinetic energy appears as a natural choice [18]. For compressible flows, Chu’s energy norm [51]322

(also called Mack’s norm) is widely used to study the non-modal behaviour of compressible flow323
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dynamics [19, 20, 25]. It contains the kinetic energy of the perturbations and a strictly positive term324

relative to thermodynamical perturbations. As such, Chu’s energy is necessarily greater than or325

equal to kinetic energy. Explicit expression of the norm matrix QE = QChu associated with Chu’s326

energy and written for conservative variables is derived hereafter, whereas QE = QEK, associated327

with the kinetic energy, is detailed in Appendix C. Starting off from primitive variables, Chu’s328

disturbances energy EChu reads [51]329

EChu = 1
2

∫
V

(
ρ|u′|2 + T

ργM2 (ρ′)2 + ρ

(γ − 1)γM2T
(T ′)2

)
dΩ (37)

The norm matrix QChu is then defined such that330 ∫
V

q′∗QChuq′ = EChu (38)

where q′ is the state vector of perturbations written as conservative variables. Let us recall that331

physical variables are here made dimensionless following equations (1). Then, primitive variables332

can be translated into conservative variables by the following relations333

u′
i = 1

ρ
((ρui)′ − uiρ

′) (39)

T ′ = (γ − 1)γM2

ρ

(
(1
2 |u|2 − e)ρ′ − ui(ρui)′ + (ρE)′

)
(40)

where e is the internal energy of the flow. Two parameters, associated with baseflow quantities,334

are now introduced as335

a1 = (γ − 1)γM2ρ

T
(41)

a2 =
(1

2 |u|2 − e)
ρ

(42)

Equation (37) can now be recast with conservative variables. Identifying this equation with equa-336

tion (38) and searching the matrix QChu as symmetrical, its coefficients can be identified as337
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QChu = 1
2dΩ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|u|2
ρ

+ T

ργM2 + a1a2
2 −u(1 + a1a2)

ρ
−v(1 + a1a2)

ρ
0 a1a2

ρ

−u(1 + a1a2)
ρ

1
ρ

+ u2a1

ρ2
uva1
ρ2 0 −ua1

ρ2

−v(1 + a1a2)
ρ

uva1
ρ2

1
ρ

+ v2a1

ρ2
0 −va1

ρ2

0 0 0 1
ρ

0

a1a2
ρ

−ua1
ρ2 −va1

ρ2 0 a1
ρ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(43)

Numerically, a first-order integration over the numerical domain Ω is performed. To do so, a block338

diagonal matrix is built from the matrix in equation (43), taking care of setting dΩi,j and baseflow339

values for each elementary volume.340

The matrix QF in equation (36) is defined from the canonical scalar product ||f̃ ||2F =
∫

Ω f̃∗f̃dΩ341

(see Appendix C for explicit expression). This matrix is positive definite. It can be noted that342

||f̃ ||2F is not homogeneous to an energy, but it is rather a mathematical norm which is chosen343

in order to reflect the energy input of the external forcing field1. Hence the optimal gain is not344

strictly defined as a ratio of two energies, and its absolute value has no physical meaning. However,345

detecting maximum values of μ relative to different wave numbers and frequencies still allows to346

find out resonance and pseudo-resonance of the flow response to a harmonic forcing. As such, it347

remains a relevant tool to analyse the linear dynamics of a noise selective amplifier flow.348

It is possible to constrain the forcing field both to a localised region of the flow and to specific349

components by introducing a matrix P such that f̃ = Pf̃s. In this paper, we choose to only consider350

the momentum components of the forcing field in order to simplify the interpretation of the forcing351

norm. A similar choice has been made for example by Sartor et al. [43]. In this case the matrix P352

has, before discretisation, the following expression353

P =

⎛⎜⎜⎜⎜⎜⎝
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

⎞⎟⎟⎟⎟⎟⎠ (44)

If N is the size of the vector f̃ , then f̃s has a size M with M ≤ N and the matrix P has a size354

N × M . The relation between forcing and response fields then reads355

q̃ = RPf̃s (45)

1Note that defining an input mechanical work would be more rigorous, but, to our knowledge, this can only
be achieved a posteriori of the optimal gain computation. This point has been thoroughly discussed by Sipp and
Marquet [35].
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Introducing energy norm matrices, equation (12) can now be recast as356

μ2 = sup
f̃s

(RPf̃s)∗QE(RPf̃s)
(Pf̃s)∗QF(Pf̃s)

= sup
f̃s

(Pf̃s)∗R∗QER(Pf̃s)
(Pf̃s)∗QF(Pf̃s)

(46)

Equation (46) can be seen as a generalized Rayleigh quotient [35] where the optimal gain μ2 is357

then the largest eigenvalue and f̃s the associated eigenvector of the Hermitian eigenvalue problem358

(R∗QERP)f̃s = μ2(QFP)f̃s (47)

Because QF is invertible and P∗P = I, equation (47) reduces to359

(P∗QF
−1R∗QERP)︸ ︷︷ ︸

A

f̃s = μ2f̃s (48)

To solve equation (48), only the inverse of the resolvent matrix R, which can conveniently be360

computed from the Jacobian matrix, is actually required. Indeed, the eigenvalue problem (48)361

can be solved by a matrix-free algorithm based on a Krylov method [52]. A set of vectors362

(v0, Av0, A2v0, ...), which composes the Krylov subspace associated with the matrix A, needs363

to be computed. Starting from an arbitrary vector v0, each Krylov vector vi is computed from the364

previous one vi−1 by solving equation vi = A vi−1. This computation requires to solve two linear365

systems involving R−1 and (R∗)−1. The detailed steps of this procedure is developed in Algorithm366

1. Finally, the optimal response can be recovered by solving the linear system (45).367

Algorithm 1: Computation of the Krylov vector vi associated with the matrix A from
the vector vi−1

1. Computing the matrix-vector product : t1 = Pvi−1

2. Solving of the linear system : R−1t2 = t1

3. Computing the matrix-vector product : t3 = QEt2

4. Solving of the linear system : (R∗)−1 t4 = t3

5. Computing the matrix-vector product : vi = P∗Q−1t4

Open library PETSc [53] interfaced with MUMPS [54] is used to solve the linear systems by a368

direct sparse LU algorithm. The matrix-free eigenvalue problem is solved using SLEPc library [55]369

by a Krylov-Schur algorithm [56].370

3.6. Boundary conditions on perturbations371

Table 2 gathers the Dirichet-Neumann conditions that are applied on perturbations at each372

boundary. Numerically, a matrix B is introduced in the equations (8) such that373

B
∂q′

∂t
= J q′ + f ′ (49)

The matrix B is defined as the identity matrix except that diagonal coefficients are set to zero at374

lines corresponding to boundary points. Note that, in practice, the global resolvent matrix is hence375
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defined as R = (iωB − J )−1. In order to finally implement the conditions given in table 2, the376

coefficients of the Jacobian matrix are directly set without using the procedure given by equation377

(13).378

Boundary Conditions

1 u′ = 0, v′ = 0, ρ′ = 0, p′ = 0

2 u′ = 0, ∂v
∂y = 0, ρ′ = 0, p′ = 0

3 ∂u′
∂x = 0, ∂v′

∂x = 0, ∂ρ′
∂x = 0, ∂p′

∂x = 0

4 u′ = 0, v′ = 0, ∂ρ
∂y = 0, ∂p

∂y = 0

Table 2: Boundary conditions applied on perturbations in optimal gain computations according to the numerical
domain shown in figure 1.

4. Validation of the present method379

In this section, solvers presented in section 3 are validated against data from existing studies.380

Solutions from the CFD solver are compared to the self-similar solution of the compressible bound-381

ary layer. Optimal gain computations are first validated against 3D global results for a Blasius382

boundary layer. Afterwards, a validation against 3D non-global results for a supersonic boundary383

layer is performed since no results for 3D global optimal perturbations are known for compressible384

flows (as opposed to 3D global stability results for compressible flows, for example presented by385

Hildebrand et al. [57]). Note that because three different test cases have been considered, Mach386

numbers and Reynolds numbers vary from one case to another accordingly with the existing data387

found in the literature. These configurations are gathered in table 3.388

§ Validation purpose Reference Mach Reynolds at inflow / outflow

4.1 Non-linear solution [58] M = 4 self similar solution

4.2 3D global perturbations [34] M = 0.3 Reδ∗ = 1000 / 1836

4.3 3D non-global perturbations [21] M = 3 Re
 = 0 / 1000

Table 3: Flows studied in section 4 to validate CFD and optimal gain solvers. Reynolds numbers are given as
presented in the existing studies.

4.1. CFD solver validation389

A computation of a supersonic boundary layer flow is performed at M = 4 in order to assess390

the baseflow solver presented in section 3.1. The numerical domain starts at the leading edge of the391

assumed adiabatic flat plate. The Reynolds number at outflow is set to Rex = 2 × 106. The steady392

nonlinear Navier-Stokes equations (3) are solved on a mesh of 800 × 250. When plotted against393

variable y
√

Rex/x, the streamwise velocity and temperature profiles taken at different x-stations394

collapse, thus recovering the expected self-similar character of this flow (fig. 2). Furthermore, these395
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profiles are in very good agreement with the results of Özgen and Kırcalı [58] obtained by solving396

the compressible boundary layer equations.397
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Figure 2: Supersonic boundary layer flow at M = 4 : streamwise velocity (left) and temperature (right) profiles
against self-similar variable y

√
Rex/x at different x-location. Results from Özgen and Kırcalı [58] are shown in black

circle symbols.

4.2. Optimal gain of Blasius boundary layer398

This section provides a validation of the optimal gain solver developed for 3D global perturba-399

tions (section 3.3 and 3.5). Comparison to the global results of Monokrousos et al. [34] is proposed.400

These results were obtained by means of an incompressible solver based on an adjoint formulation,401

using a time-stepping method and a fringe zone technique. The physical configuration hereby402

studied is a Blasius boundary layer developing over a flat plate. Reynolds number at inflow (resp.403

outflow) is set at Reδ∗ = 1000 (resp. Reδ∗ = 1836). Using the displacement thickness δ∗
0 at inflow404

as the reference length scale, the numerical domain spans over [0, 800] × [0, 30].405

As the numerical framework of the present paper is for compressible flow, the Mach number is406

set to M = 0.3 in order to get a solution close to the incompressible results. First, the baseflow com-407

putation is performed using the CFD solver presented in section 3.1. Subsonic boundary conditions408

are used (see table 1) and Lx0 is set to 200δ∗
0 . A new numerical domain, which is hereafter used409

for optimal gain computations, is then obtained by truncating the fields computed from the CFD410

solver so that they match the domain described in the above paragraph. Optimal gain computa-411

tions are then performed with the forcing frequency set to ω = 0 whereas the wave number β varies412

over [0, 1.2]. Kinetic energy is used as the norm matrix in equation (12). Note that Monokrousos413

et al. [34] do not take into account the 1/2 factor in the kinetic energy ; therefore, these results are414

rescaled to match the kinetic energy definition hereby used. The present computation produces415

slightly lower optimal gain values (around 5%) compared to the results of Monokrousos et al. [34]416

(fig. 3). No compressible effect or mesh influence have been found to account for this discrepancy.417

It is suggested that this small discrepancy might stem from the fundamentally different approaches418

used between the reference and the present work. Indeed, Monokrousos et al. [34] computed the419

time evolution of linearised perturbations on a greater numerical domain x ∈ [0, 1000], where420

perturbations are damped for x > 800 by means of a fringe zone technique. The authors thereby421

suggested to consider x ∈ [0, 800] as the optimisation domain, which we used in the present compu-422

tation. However, residual perturbations might persist for x > 800 and could account for a slightly423
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higher optimal gain value than a computation performed on a numerical domain strictly limited424

to x ∈ [0, 800]. Nevertheless, rescaling the present results allows to observe a perfect agreement425

between the optimal gain behaviours taken as a function of β. In particular, the optimal wave426

number β = 0.6 is retrieved. This agreement is the most significant : indeed, the absolute value of427

the optimal gain has no physical meaning [35] contrary to the forcing frequency or wave number428

at which the optimal gain is maximum. The 3D fields depicted in figure 4 furthermore support429

the validity of our computation since the same counter-rotating rolls and streaks topologies as430

Monokrousos et al. [34] are respectively found as the optimal forcing and response fields associated431

with the maximum optimal gain value.432

0

5000

10000

15000

20000

25000

30000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

μ

β

μ

β

Figure 3: Optimal gain as a function of the wave number β at ω = 0 for an incompressible boundary layer. Blue
squares : present results, at M = 0.3. Black line : results of Monokrousos et al. [34] computed for global 3D
perturbations in a Blasius boundary layer, using a time-stepping method associated with a fringe zone technique.
Red crosses are obtained by rescaling the optimal gain values of the red squares with those of Monokrousos et al.
[34].

Figure 4: Real part of optimal forcing component f ′
z (left) and optimal response streamwise velocity u′ (right) at

β = 0.6 and ω = 0 for a boundary layer at M = 0.3. Iso-surfaces at −10% and 10% of the maximum absolute value
are shown in red and blue. The numerical domain is truncated in the y-direction to ease visualisation.

4.3. Optimal gain of a supersonic boundary layer at M = 3433

To our knowledge, no work dealing with 3D global optimal forcing in compressible flows has434

been published to this date. In order to validate the method proposed in section 3.3 - which allows435

to compute 3D optimal global perturbations, a comparison with the ”non-global” results from436
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Tumin and Reshotko [21] obtained for a supersonic boundary layer is performed. This method lies437

on the optimisation of an energetic ratio between perturbation profiles at two different locations,438

using Chu’s energy norm [51]. Hence, this approach is a spatial equivalent of an optimal initial439

condition computation whose solution is based on the parabolised boundary layer equations by440

assuming the expected velocitiy scales of streaks (u ∼ O(1) et v, w ∼ O(ε) [21]).441

In order to compare these results to the global perturbations approach, we suggest to perform442

a computation in which the forcing field is constrained in a region around a location xf (fig. 5)443

that corresponds to the upsteam location used by Tumin and Reshotko [21]. Anywhere outside this444

region, the forcing field is equal to zero. This is achieved by means of the P matrix introduced in445

section 3.5. Moreover, the energy of the response is optimised in a restricted region at location xopt446

(fig. 5) which corresponds to the downstream location used by Tumin and Reshotko [21]. Thereby,447

the relation between our global approach and the ”non-global” approach used as a reference is the448

following : the computed forcing fields at xf plays the role of the optimal condition, the response449

fields at xopt is the perturbation that grows downstream and the optimal gain mimics the energetic450

ratio.451

The baseflow computation is performed with the Mach number set at M = 3 and the Reynolds452

number, based on the Blasius length scale 
 =
√

η∞x/ρ∞u∞, set at Re
 = 1140 at outflow. The453

value of xopt is set at the abscissa corresponding to Re
 = 1000 and the Blasius length at this454

specific abscissa, 
0 =
√

η∞xopt/ρ∞u∞, will be used as the reference length scale. Two different455

values of xf will successively be considered such that the ratio R = xf/xopt is equal to 0.2 and 0.4.456

The numerical domain spans over x/
0 ∈ [0, 1300] and y/
0 ∈ [0, 100]. The regions over which the457

forcing and response fields are constrained span over Δx/
0 = 40 in the streamwise direction but458

are not restricted in the normal direction. Results of optimal gain computations are compared to459

those of Tumin and Reshotko [21] by renormalising the optimal gain. Indeed, the definitions of460

these two quantities are different and their absolute value cannot be directly compared. A very461

good agreement is observed for the two ratios R considered (fig. 6). The optimal response fields462

associated with the maximum optimal gain shows that the growth of streaks starts from the forcing463

location (fig. 5). The convectively unstable nature of these structures is observed as their growth464

goes on downstream from the region where they are forced.465
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Figure 5: Real part of u′ of the optimal response computed for two values of R = xopt/xf . Here, the forcing field is
constrained to be localised between the two vertical dot lines. In both cases, the energy optimisation domain of the
response is located between the vertical solid line at xopt/�0 = 1000.
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Figure 6: Optimal gain computed at ω = 0 with constrained forcing and response fields for the compressible boundary
layer at M = 3, for two values of R = xopt/xf . Black line : results from Tumin and Reshotko [21]. Reference length
scale is �0 =

√
η∞xopt/ρ∞u∞. Square symbols : present results.

5. Optimal forcing and response of the supersonic boundary layer at M = 4.5466

5.1. Baseflow467

The baseflow used for optimal gain computations (section 5.2) is presented in this section. A468

boundary layer developing over an adiabatic flat plate is considered at M = 4.5, at which local sta-469

bility analysis show that Mack mode reaches its maximum growth rate [59]. Physical and numerical470

parameters are reported in table 4 where the Reynolds number is computed according to different471

reference length scales. Local stability studies usually take Blasius length 
 =
√

η∞x/ρ∞u∞ as472

reference, which is associated with the plate abscissa x according to Re
 =
√

Rex. Here, com-473

pressible displacement thickness δ∗(x) will be considered. As expected, the relation between Re
474

and Reδ∗ obtained from our numerical computation is observed to be linear as a consequence of475
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Adiabatic flat plate
M = 4.5
Rex

(out) = 2 × 106 ⇐⇒ Re

(out) = 1414 ⇐⇒ Reδ∗ (out) = 11770

Rex
(opt) = 1.75 × 106 ⇐⇒ Re


(opt) = 1323 ⇐⇒ Reδ∗ (opt) = Reδ0∗ = 11000
x/δ∗

0 ∈ [0, 182] et xopt/δ∗
0 = 159

y/δ∗
0 ∈ [0, 45] (domain used for the computation of the baseflow)

y/δ∗
0 ∈ [0, 9] (domain used for the computation of the optimal gain)

Mesh : 1600 × 180

Table 4: Physical and numerical parameters of the baseflow

Figure 7: Computed Reynolds number Reδ∗ based on the compressible displacement thickness as a function of the
Reynolds number Re� based on Blasius length scale. a is the slope of the linear curve, obtained by linear regression
(r2 > 0.99).

self-similarity (fig. 7). The corresponding local Mach number field is depicted in figure 8. Note476

that the domain over which Chu’s disturbances energy is integrated during optimal gain compu-477

tation is defined over x < xopt, where xopt is the abscissa where Reδ∗ = 11000. The compressible478

displacement boundary δ∗
0 at this abscissa will be used as the reference length. It should be pointed479

out that this length appears both in the non-dimensional forcing frequency ω and wave number480

β. Finally, the actual baseflow used for optimal gain computation is truncated in the y-direction481

for computational savings. It is shown in Appendix D that the results are independent from this482

choice of domain.483
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Figure 8: Local Mach number field of the baseflow at M = 4.5. Optimisation domain used for optimal gain
computation is located upstream from the vertical dotted line. Note that the numerical domain is truncated in the
y-direction to ease the visualisation.

5.2. Optimal gain484

Results from optimal gain computations for 3D perturbations developing over the baseflow485

presented in section 5.1 are shown in figure 9. Mesh convergence and computational cost are486

given in Appendix D and Appendix E. In these calculations, the forcing field is not constrained487

to be localised in any zones of the flow. Three regions of maximum gain can be identified in488

the ω − β space, where the flow is therefore especially receptive to an external forcing. Optimal489

forcing frequency and wave number associated with this three regions are shown in table 5. As the490

forcing frequency goes to zero, an optimal wave number is found to favour the non-modal growth491

of streaks. At medium frequency, a peak of optimal gain is detected for non-zero wave numbers492

(approximately half the value of the streaks one), which implies that the associated perturbation493

has an oblique wave structure. This is the first mode instability of the compressible boundary layer494

[11]. At high frequency, a maximum of optimal gain is reached for zero wave number and pertains495

to the growth of the second mode (Mack mode). Spatial structures of each optimal forcing and496

response corresponding to the three optimal gain maximums will be analysed in section 5.3.497

Instability ωopt βopt

Streaks → 0 2.2
First mode 0.32 1.2
Second mode 2.5 0

Table 5: Optimal forcing frequency and wave number for each instability

The interpretation of the values reached by the gain peaks must be done cautiously. Indeed,498

as pointed out in section 3.5, the absolute value of the optimal gain has no physical meaning.499

Relative values can however be compared in order to assess the efficiency of the different receptivity500

mechanisms. Here, the maximum optimal gain value is associated with the first mode instability501

whereas the streaks has a lower value within the same order of magnitude. The second mode502

has an optimal gain one order of magnitude lower than the first mode. Note that this is not in503

contradiction with the fact that the second mode growth rate is twice higher than the first mode504

one obtained from local stability computations [11]. Indeed, the optimal gain is a global quantity505

that accounts for the energy growth of perturbations over a given physical domain. Thus it depends506
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Figure 9: (b) : Optimal gain of the compressible boundary layer at M = 4.5 for 3D perturbations is plotted in the
ω − β space. Three regions of locally maximum gain are detected and are associated with three linear instabilities.
(a) : Optimal gain associated with first mode instability is plotted against ω at β = 1.0, β = 1.2 and β = 1.4. (c) :
Optimal gain associated with streaks is plotted against β at ω = 0.002. (d) : Optimal gain associated with second
mode instability is plotted against ω at β = 0.
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on both the growth rate of the instability and the length over which it grows, that is the width of507

its neutral stability curve at a given frequency. The analysis of the energy growth profiles plotted508

in section 5.4 will shed more light on this matter.509

5.3. Analysis of the optimal forcing and response510

Spatial structures of the optimal forcing and response associated with the three regions of511

maximal gain are examined in this section. At low frequency (fig. 10), the lift-up mechanism512

is recovered. The optimal forcing is made of streamwise counter-rotating rolls that initiate the513

transport of streamwise momentum of the baseflow by the perturbation. Streaks of high streamwise514

velocity, spanning in the streamwise direction, are thus generated which correspond to the local515

analysis results predicting a zero streamwise wave number [60]. These fields are actually similar516

to those obtained in an incompressible boundary layer [34], showing that the lift-up effect can be517

generalised to compressible flow [19]. Note, however, that a peak of density appears in the response518

profile above the streamwise velocity peak and close to the generalised inflection point yi of the519

baseflow, which is defined for each streamwise station as ∂/∂y [ρ∂u/∂y] (yi) = 0. This feature has520

theoretical grounds in a local, modal instability framework [59] (it will indeed be observed in the521

optimal responses associated with the first and second modes, as described further in this section).522

It is here noted that the non-modal growth of streaks also shares this behaviour.523
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Figure 10: Optimal forcing (left) and response (right) at ω = 0.002 and β = 2.2. Top : Iso-surfaces at 10% of f̃z

(left) and ũ (right). Note that the spanwise axis is normalised using the wave number of the perturbations. Bottom
: Profiles at the streamwise location corresponding to the maximum forcing density (left) and Chu’s energy density
(right). Profiles at x/δ∗

0 = 35 (left) and x/δ∗
0 = 159 (right) Forcing components are normalised by the maximum

value of f̃z. Black dotted line indicates the generalised inflection point.
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At medium frequency, optimal forcing and response fields appear as oblique waves (fig. 11).524

Assuming a wavelike structure of the perturbation fields q̃(x, y) = q̂(y)eiαx = q̂(y)eiαrxe−αix, the525

streamwise wave number αr can be computed as526

αr = �
( 1

iq̃
∂q̃
∂x

)
(50)

where � stands for the real part of the complex quantity. In practice, the streamwise velocity527

profile ũ(x) at y = 1 is used in equation (50). The wave angle compared to the baseflow direction528

can then be computed according to529

ψ = tan−1
(

β

αr

)
(51)

Here, the angle of the optimal response is found to be equal to 72◦ which can be compared to530

the angle of 60◦ of the most unstable first mode obtained from a local stability analysis [11]. Since531

the optimal response is not on the one hand strictly modal in nature and on the other hand is532

based on a global and not a global analysis, there is no reason to find the 60◦ value of a first mode533

wave computed with a local approach (a comparison with results from an eN method would here534

be interesting, but is beyond the scope of the present study). Nevertheless, both approaches do535

show that growth of the first mode is stronger as an oblique wave. From figure 11, it is observed536

that the forcing fields tend to be localised in the upstream region of the numerical domain whereas537

the response grows downstream as a consequence of streamwise non-normality [37]. Moreover, the538

iso-surfaces of the forcing field are tilted upstream which suggests the action of the non-modal Orr539

mechanism. The examination of the disturbances profile (fig. 11) shows that transverse forcing is540

the most efficient and that it mainly generates a streamwise velocity. Compared to incompressible541

Tollmien-Schlichting waves, the velocity profile appears further away from the wall, close to the542

generalised inflection point which pertains to the prevalent inviscid mechanism of the first mode543

instability as Mach number increases.544

Optimal forcing and response at high frequency are now examined. From the wave number545

computed following (50), the phase velocity cϕ and subsequently the relative Mach number field546

M̂ [11, 8] of the optimal response can be obtained, the latter being defined as547

M̂ = u − cϕ

c
(52)

where c is the speed of sound computed from the baseflow. A supersonic region M̂ > 1 is548

detected close to the wall (fig. 12) which is, according to Mack [11], a condition for additional549

unstable modes to exist. In this region, profiles show that each physical quantity of the optimal550

response reaches a maximum. The optimal forcing is however not very active in this part of the551

flow. Instead, it tends to be localised near the generalised inflection point where, in addition,552

density reaches another peak. Hence, two distinct mechanisms seem to coexist. On the one hand,553

the growth of hydrodynamical and thermodynamical perturbations inside the supersonic region554

seem to purely pertain to the second mode instability. On the other hand, the thermodynamical555

perturbations are also amplified along the generalised inflection point. Note that similar density556

peaks were observed for streak and first mode optimal responses. This property, that seems shared557

by these three different compressible instabilities, can also be observed in the studies of Hanifi et al.558

[19] and Erlebacher and Hussaini [61].559
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5.4. Energy growth560

In this section, the energy growth of the optimal responses are examined in order to further561

characterised the development of the three convective instabilities previously exhibited. In order562

to assess these behaviours, energy densities can be defined at each streamwise station [35]. For563

example, the energy density associated with the kinetic energy is taken as dK(x) =
∫ ymax

0 ρ|ũ|2dy.564

The Chu’s energy density is constructed in a similar way and is referred to as dChu(x). The forcing565

density is also defined as dF(x) =
∫ ymax

0 |f̃ |2dy and the streamwise evolution of these quantities566

are plotted in figure 13. It is observed that the maximum forcing density associated with the first567

mode response is located far upstream from the one of the second mode. The energy growth of568

the first mode also starts more upstream than the second mode and continues until the end of the569

optimisation domain whereas the growth of the second mode stops slightly before the downstream570

boundary. This allows to shed light on why the optimal gain associated with the first mode is571

higher than that of the second mode. Indeed, even if its amplification is slower, it spans over a572

longer length. These observations are consistent with the neutral stability curve obtained by Malik573

and Balakumar [62], where it can be seen that, in the frequency range studied here, the lower574

(respectively upper) branch of the first mode is found at a lower (respectively higher) Reynolds575

number than the second mode.576

Because the streaks result from a purely non-modal instability, interpreting its energy growth577

cannot be done through neutral curve considerations. However, it is observed that the streaks578

growth occurs over a larger length than the first and second mode. Besides, the forcing density579

profile is more spread than that of the first and second modes, the latter being more localised580

around a particular streamwise location. Using the terminology described by Sipp et al. [31], these581

observations can be interpreted in terms of convective-type and component-type non-normalities,582

which are responsible for the growth of these different instabilities. The convective-type non-583

normality is at play for both the first and second modes as the support of the forcing and response584

fields are clearly separated in the streamwise direction, respectively upstream and downstream [37].585

In the case of the streaks growth, the component-type non-normality is active as it is related to586

the lift-up mechanism. This mechanism is local in the sense that, at each streamwise location, the587

growth of the response takes advantage of the transport in the normal direction of the baseflow588

momentum by the perturbations. As such, a local support of the forcing field over a large portion589

of the streaks growth domain appears to be more efficient.590

To further characterise the energy growth of the optimal responses, the ordinate at which the591

density energy reaches its maximum is computed at each streamwise station. It is formally defined592

for Chu’s energy and kinetic energy as593

yChu
m (x) = arg max

y

[
ρ|ũ|2 + T

ργM2 ρ̃2 + ρ

(γ − 1)γM2T
T̃ 2

]
(53)

yK
m(x) = arg max

y

[
ρ|ũ|2

]
(54)

When normalised by the local displacement thickness δ∗(x), it is found that yChu
m is constant594

along the plate (fig. 14). Hence, the Chu’s energy profile grows as
√

x, which can be seen as a595

property inherited from the baseflow (see section 5.1). Moreover, yChu
m is localised close to the596

generalised inflection point. The inflection point of the density profile is found to be less relevant597

to predict the peak of energy as it is localised slightly higher. However, these observations hide598
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Figure 13: Forcing density (left) and Chu’s energy density (right) of optimal forcing and response associated with
optimal gain maxima (see table 5).

the growth of the second mode perturbation in the relative Mach number supersonic region close599

to the wall (fig. 12). This is revealed in figure 14 by plotting yK
m which is normalised by the600

non-local displacement thickness δ∗
0 . Both yK

m and yChu
m evolve along the general inflection point601

until the abscissa x1/δ∗
0 = 83. But for x > x1, yK

m is located closer to the wall inside the supersonic602

region and does not scale as
√

x any more. This steep modification of growth indicates the start603

of the second mode instability as x1 also corresponds to the maximum of forcing density (fig. 13).604

Indeed, this observation is in agreement with the work of Sipp and Marquet [35] who observed, for605

a Blasius boundary layer, that the location of the forcing density coincides with the location of the606

lower branch of a convective instability. Finally, although not shown here, note that yK
m still grows607

as
√

x for streaks and first mode instabilities. In this case, it is observed that yK
m < yChu

m since the608

energy peak, which is located further away from the wall than velocities peaks, is not taken into609

account in kinetic energy.610
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6. Conclusion611

A numerical method allowing to compute the Jacobian matrix associated with 3D global per-612

turbations developing over a 2D baseflow has been proposed. This method is an extension of the613

discretised-then-linearised procedure introduced by Mettot et al. [1] for 2D global perturbations614

which is particularly suited for compressible flows. Because a Fourier expansion is performed in615

the transverse direction, modifications of the 2D method have been required : the Jacobian matrix616

has been separated into three conveniently computable matrices. The numerical implementation617

of the 3D solver from an available 2D solver is straightforward and the increase of computational618

cost is kept affordable. In order to study convectively unstable compressible flows, optimal gain619

computations have then been performed to compute 3D global optimal forcing and response. This620

approach is based on the computation of the largest singular value of the global resolvent oper-621

ator (built from the Jacobian matrix) and takes into account both modal and non-modal effects622

(resonance and pseudo-resonance) involved in the growth of perturbations subject to an external623

forcing. The validation of the numerical method has first been achieved for a Blasius boundary624

layer, for which global results were available from an incompressible solver [34]. Afterwards, val-625

idation against non-global results of a supersonic boundary layer [21] has been performed given626

that no global results were so far known.627

To demonstrate the potential of the numerical method, a detailed study of the receptivity of628

the supersonic boundary layer at M = 4.5 and Reδ∗ = 11000 has finally been presented. Optimal629

gain computations as a function of the forcing frequency ω and the transverse wave number β630

has revealed three regions of locally maximum optimal gain value. They are associated with631

the growth of compressible streaks (ω → 0, β = 2.2), first mode instability as an oblique wave632

(ω = 0.32, β = 1.2) and second mode instability (ω = 2.5, β = 0). The generalised inflection point633

has been shown to play a role in the growth of thermodynamical perturbations and Chu’s energy634

growth profiles along the flat plate have been found to evolve as
√

x. These findings have been635

moderated regarding the second mode instability as the profiles of hydrodynamical perturbations636
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have been observed to grow independently of x inside the supersonic relative Mach number region637

close to the wall.638

As the numerical method does not require any assumptions on the non-parallel nature of the639

baseflow, future work may tackle more complex flows. For example, 3D receptivity of the shock640

wave/boundary interaction could be further examined [43]. Exhibiting the main features of the 3D641

dynamics of industrial flows, involving complex geometries, could also be achieved while keeping642

affordable computational costs. Asymmetrical flows could moreover be studied providing that the643

mathematical framework is extended to cylindrical coordinates. This would especially be relevant644

to analyse the acoustic radiation associated with the growth of wave packets in turbulent jet645

flows [63]. Finally, application of the numerical method to the control of compressible flows is a646

promising perspective. 3D perturbations, as we have shown for the supersonic boundary layer,647

can reach larger optimal gain values than 2D perturbations and can potentially represent the most648

dangerous instabilities that one would want to control. From the construction of the Jacobian649

matrix of 3D perturbations presented in this paper, and by following the adjoint and Hessian650

based method proposed by Mettot et al. [1] in a discrete framework, passive control strategies of651

3D convective instabilities in compressible flows could be implemented.652
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Appendix A. Numerical fluxes used for the 3D perturbations Jacobian matrix655

The complete expressions of the flux separation performed in section 3.3 for the computation656

of the Jacobian matrix for 3D perturbations are given hereafter. Considering the Navier-Stokes657

fluxes F, G and H, the strategy lies on isolating the terms containing transverse derivatives ∂/∂z658

into vectors Fνz, Gνz and Hνz and writing the remaining terms into vectors F′, G′ and H′.659

F = F′ − Fνz660

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu

ρu2 + p − 1
Reτxx

ρuv − 1
Reτxy

ρuw − 1
Reτxz

u(ρE + p) − 1
Re [uτxx + vτxy + wτxz] − λ

P rRe(γ−1)M2∞
∂T
∂x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu

ρu2 + p − η
Re(4

3
∂u
∂x − 2

3
∂v
∂y )

ρuv − η
Re(∂u

∂y + ∂v
∂x)

ρuw − η
Re

∂w
∂x

u(ρE + p) − η
Re

[
u(4

3
∂u
∂x − 2

3
∂v
∂y ) + v η

Re(∂u
∂y + ∂v

∂x) + w η
Re

∂w
∂x

]
− λ

P rRe(γ−1)M2∞
∂T
∂x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Fνz =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−2
3

η
Re

∂w
∂z

0
η

Re
∂u
∂z

η
Re

[
−u2

3
∂w
∂z + w ∂u

∂z

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
G = G′ − Gνz661

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρv

ρuv − 1
Reτyx

ρv2 + p − 1
Reτyy

ρvw − 1
Reτyz

v(ρE + p) − 1
Re [uτyx + vτyy + wτyz] − λ

P rRe(γ−1)M2∞
∂T
∂y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

G′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρv

ρuv − η
Re(∂u

∂y + ∂v
∂x)

ρv2 + p − η
Re(4

3
∂v
∂y − 2

3
∂u
∂x)

ρvw − η
Re

∂w
∂y

v(ρE + p) − η
Re

[
u(∂u

∂y + ∂v
∂x) + v(4

3
∂v
∂y − 2

3
∂u
∂x) + w ∂w

∂y

]
− λ

P rRe(γ−1)M2∞
∂T
∂y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Gνz =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

−2
3

η
Re

∂w
∂z

η
Re

∂v
∂z

η
Re

[
−2

3v ∂w
∂z + w ∂v

∂z

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
H = H′ − Hνz662

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρw

ρuw − 1
Reτzx

ρvw − 1
Reτzy

ρw2 + p − 1
Reτzz

w(ρE + p) − 1
Re [uτzx + vτzy + wτzz] − λ

P rRe(γ−1)M2∞
∂T
∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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H′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρw

ρuw − η
Re

∂w
∂x

ρvw − η
Re

∂w
∂y

ρw2 + p − η
Re(−2

3
∂u
∂x − 2

3
∂v
∂y )

w(ρE + p) − η
Re

[
u∂w

∂x + v ∂w
∂y + w(−2

3
∂u
∂x − 2

3
∂v
∂y )

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hνz =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
η

Re
∂u
∂z

η
Re

∂v
∂z

η
Re

4
3

∂w
∂z

η
Re

[
u∂u

∂z + v ∂v
∂z + 4

3w ∂w
∂z

]
+ λ

P rRe(γ−1)M2∞
∂T
∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Appendix B. Computation of J ′
νz : modified fluxes F̂νz, Ĝνz and Ĥνz663

Full expressions of the modified fluxes F̂νz, Ĝνz and Ĥνz used in section 3.3.3 to compute the664

Jacobian matrix J ′
νz are given hereafter.665

F̂νz =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−2
3

η
Rew

0
η

Reu

η
Re

[
−u2

3w + wu
]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ĝνz =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

−2
3

η
Rew

η
Rev

η
Re

[
−2

3vw + wv
]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Ĥνz =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
η

Reu

η
Rev

η
Rew

η
Re

[
uu + vv + 4

3ww
]

+ λ
P rRe(γ−1)M2∞

T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Appendix C. Explicit expression of norm matrices written in conservative variables666

Full expressions of norm matrices, associated with the discrete scalar products presented in667

section 3.5, are given for the kinetic energy of perturbations (QKE) and the canonical norm of the668

forcing field (QF ). The matrix QKE is derived similarly to QChu in section 3.5, the latter actually669

containing the former. Its expression reads670

QKE = 1
2dΩ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|u|2
ρ −u

ρ −v
ρ 0 0

−u
ρ

1
ρ 0 0 0

−v
ρ 0 1

ρ 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(C.1)

The matrix QF is associated to a canonical scalar product and can readily be expressed as671

QF = dΩ

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(C.2)

As noted in section 3.5, the numerical implementation of the above expression is achieved by672

building a block-diagonal matrix from these blocks, taking care of setting elementary volumes dΩi,j673

and baseflow values for each point.674

Appendix D. Mesh convergence675

Mesh convergence of optimal gain computations presented in section 5.2 is examined. Mesh676

A (1600 × 81, see table D.6) is found sufficient for both streaks (low frequencies) and first mode677

(medium frequencies) computations (fig. D.15). The height Ly = 9δ∗
0 of the numerical domain is678

high enough to ensure the independence of the results with respect to this parameter. At higher679

frequencies, it is observed that mesh A is not fine enough as the streamwise wave number of the680
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Figure D.15: Mesh convergence (nomenclature of the different meshes is given in table D.6). Left : optimal gain as
a function of β at ω = 2 × 10−3. Right : optimal gain as a function of ω at β = 0.

Mesh Nx Ny Ly

A 1600 81 9
B 1600 108 9
C 2400 81 9
D 1600 106 18
E 2400 108 9
F 2400 165 9
G 3200 108 9
H 2400 144 18

Table D.6: Nomenclature of meshes used in figure D.15.

computed responses gets smaller and a strong velocity gradient is observed close to the plate (see681

figure 12). Thus, a finer mesh is used for ω > 2.0 to ensure the mesh convergence of the peak682

associated with the second mode. As shown in figure D.15, mesh E (2400×108) is found sufficiently683

fine to compute this peak.684

Appendix E. Computational costs685

Solving the linear systems involved in the computation of the Krylov vector (algorithm 1 in686

section 3.5) is the bottleneck in terms of both CPU time and RAM requirements. Besides, it687

cannot be known a priori how many Krylov vectors are needed to solve the eigenvalue problem in688

equation (48) until a residual equal to 10−3 is reached. In practice, it is observed that a minimum of689

3 vectors and a maximum of 12 vectors are needed and that large values of the optimal gain require690

fewer number of Krylov vectors. Numerical costs involved in the optimal gain computations of the691

boundary layer at M = 4.5 (section 5.2) are reported in table E.7. The 3D perturbations solver692

requires approximately twice the time and less than twice the maximum RAM that is needed to693

compute the optimal gain for 2D perturbations. Hence, the numerical costs lie in the same order694

of magnitude for both solvers, which means that if one can afford a 2D perturbations computation,695

one can generally afford a 3D perturbations computation.696
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Solver CPU time maximum RAM
2D perturbations 42 min 7.31 GB
3D perturbations 88 min 12.5 GB

Table E.7: CPU time and maximum RAM required to compute one Krylov vector to solve the eigenvalue problem
(48) using mesh A (see table D.6). These computations were conducted using Intel Xeon(R) CPU E5-2630 v2 @

2.60GHz
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