Paola CINNELLA, Professeur
Téléphone: 01.44.27.54.65
email : Cette adresse e-mail est protégée contre les robots spammeurs. Vous devez activer le JavaScript pour la visualiser.
Adresse physique: Campus de Jussieu, Tour 55-65, bureau N° 516
Adresse courrier: Institut Jean le Rond d'Alembert Université Pierre et Marie Curie
Boîte 162, Tour 55-65, 4 place Jussieu, 75252 Paris Cedex 05.
https://www.linkedin.com/in/paola-cinnella-7469ba11/
https://www.researchgate.net/profile/Paola-Cinnella
Member of the "Combustion, Clean Energies and Turbulence" team of d'Alembert http://www.dalembert.upmc.fr/frt/
Coordinator of the LearnFluidS "Machine-LEARNing for FLUID flow Simulations" (https://www.researchgate.net/project/LearnFluidS-Machine-LEARNing-for-FLUID-Simulations) project team of the Sorbonne Institute for Computational Science and Data (https://iscd.sorbonne-universite.fr/)
Editor in Chief, "Computers & Fluids"
Associate Editor, "International Journal of Heat and Fluid Flow"
Scientific Secretary: ICCFD, International Conference in Computational Fluid Dynamics, conference series. https://www.iccfd.org/
NEWS:
Kick-Off of the SciFiTurbo Horizon Project:
New papers published:
- Buffa, V., Salaün, W., & Cinnella, P. (2024). Influence of posture during gliding flight in the flying lizard Draco volans. Bioinspiration & Biomimetics. In press https://doi.org/10.1088/1748-3190/ad1dbb
- Bienner, A., Gloerfelt, X., Yalçin, Ö., Cinnella, P., « Multiblock parallel high-order implicit residual smoothing time scheme for compressible Navier–Stokes equations”. Computers & Fluids, 269, 30 January 2024, 106138. https://doi.org/10.1016/j.compfluid.2023.106138
- Passiatore, D., Sciacovelli, L. Cinnella, P., Pascazio, G., "Evaluation of a high-order central-difference solver for highly compressible flows out of thermochemical equilibrium". Computers & Fluids, 269, 30 January 2024, 106137. https://doi.org/10.1016/j.compfluid.2023.106137
- Sciacovelli, L., Cannici, A., Passiatore, D., Cinnella, P., "A priori tests of turbulence models for compressible flows", 2023. Accepted for publication in the International Journal of Numerical Methods for Heat and Fluid Flows.
- De Zordo-Banliat, M., Dergham, G., Merle, X., Cinnella, P., "Space-dependent turbulence model aggregation using machine learning". Journal of Computational Physics, 497, 15 January 2024, 112628. https://doi.org/10.1016/j.jcp.2023.112628
Positions available in my group
- Two PhD positions available in the frame of the Sci-Fi-Turbo European project!! See below for details:
PHD_SciFiTurbo_PHDs.pdf
Older news
P. Cinnella appointed Editor in Chief of Computers & Fluids
Computers & Fluids, published by Elsevier, has been running since 1973, and is one of the oldest Journals in Computational Fluid Dynamics.
Best paper award ASME TURBO EXPO 2022
Our paper presented at the 2022 Turbo Expo in Rotterdam "Hot-Wire Anemometry in High Subsonic Organic Vapor Flows", ASME Paper GT2022‐81686, was chosen as one of the Best Papers by the Controls, Diagnostics & Instrumentation Committee of the American Society of Mechanical Engineers (ASME) Turbo Expo Technical Conference. The paper results from a collaboration with Technical University of Muenster (Germany) and our team in the frame of ANR-DFG project REGAL-ORC, whereby the German team developed hot-wire anemometry for organic vapour with the support of high-fidelity numerical simulations by PhD candidate Camille Matar
TEAM
Postdocs (ongoing)
Machine learning for turbulent flows
- Mourad OULGHELOU. "Bayesian methods for consistent data-driven turbulence modeling". Funding: Sorbonne Institute of Computation and Data Science
PhDs (ongoing)
Dynamics of dense gases
- Camille MATAR: "Simulation of transitional non-ideal gas flows in ORC turbines by RANS / LES multi-fidelity coupling". Funding: SMAER Doctoral School fellowship.
- Aurélien BIENNER. "Real-gas effects on freestream transition and losses in ORC turbine flows". Funding: ANR-DFG Project "Regal-ORC".
Machine learning for turbulent flows
- Paul CALVI. "Data-driven turbulence models for highly compressible flows". Funding: CEA.
- Louenas ZEMMOUR: "Data-driven laminar-turbulent transition models for turbomachinery flows". Funding: Sorbonne Institute of Computation and Data Science.
- Cécile ROQUES: "Machine Learning modelling of turbulent flows in turbomachinery". Funding: CIFRE/Safran Tech.
Advanced numerical methods for compressible flow
- Ariadni LIAPI: "Adaptive mesh refinement of RANS/LES simulations in aerodynamics". Funding: Civil Aviation Direction, MAMBO Collaborative Project.
- Mikail SALIHOGLU: "Strategies for the h/p adaptation of k-exact finite volume schemes based on successive corrections". Funding: Civil Aviation Direction, MAMBO Collaborative Project.
Master Interns (ongoing)
- Matthias RUESSEL: "Data-driven modeling of sediment bed rheology". Visiting student, TU Dresden
External team members and collaborators
Fluid Dynamics Laboratory, ENSAM, Paris
- Prof. Xavier GLOERFELT: HPC, scale-resolving simulations of turbulent flow, high-order schemes
- Dr. Xavier MERLE: Bayesian methods, data-driven turbulence modelling, uncertainty quantification
- Dr. Luca SCIACOVELLI: HPC, scale-resolving simulations of real-gas turbulent flows, hypersonic flows
Ongoing collaborations with companies
Safran Tech
- Dr. Grégory DERGHAM: Data-driven turbulence model aggregation for turbomachinery problems
ArianeGroup
- Dr. Pierre BRENNER, David PUECH, Jean COLLINET, Alexandre LIMARE: k-exact finite volume schemes, mesh adaptation, RANS/LES simulations. MAMBO Project
Airbus Operations
- Dr. Grégoire PONT: k-exact finite volume schemes, mesh adaptation, RANS/LES simulations. MAMBO Project
Other collaborations
Université Libre de Bruxelles
- Prof. Alessandro PARENTE, PhD Candidate Léo COTTELEER: Data-driven turbulence modeling for environmental flows
Politecnico di Bari, Centro di Eccellenza Meccanica Computazionale
- Prof. Giuseppe PASCAZIO: Hypersonic flow models
Technical University Dresden (Germany)
- Prof. Jochen FROELICH: Turbulence models for sediment transport
AArhus University (Danemark)
- Prof. Mahdi ABKHAR, PhD Candidate Ali AMARLOO: Data-driven turbulence models for flows over rough surfaces.
Former members
Master interns:
- Niklas NEHER: "Data-driven turbulence model corrections for sediment transport problems". Visiting from TU Dresden.
- Louenas ZEMMOUR: "Bayesian aggregation of data-driven turbulence model corrections". Sorbonne University.
- Paul CALVI: "Data-driven turbulence modelling for highly compressible flows". Sorbonne University.
- Antoine RULLIER: "Deep-learning enhanced turbulence modelling". Centrale Supélec/Sorbonne University.
PhDs:
- Soufiane CHERROUD: "Self-adaptive Bayesian learning of data-driven turbulence models". Funding: SMI Doctoral School fellowship
ABOUT ME
(click below to see more)
Research: Computational Fluid Dynamics, Compressible flows of ideal and real gases, data-driven modeling and uncertainty quantification of turbulent flows.
Education
1995 : Master degree in Mechanical Engineering « summa cum laude », Politecnico di Bari (Italy)
1996 : DEA (Master of Science) in Mechanics from Ecole Nationale Supérieure des Arts et Métiers (ENSAM), France
1999 : PhD in ‘Engineering of Thermal Machines', Politecnico di Bari
1999 : PhD in ‘Fluid Mechanics’ at ENSAM, « summa cum laude » (très honorable, felicitations du jury)
2006 : Habilitation à Diriger des Recherches, Université Pierre et Marie Curie, France
Professional experience
1999- 2000 : Attaché temporaire d’Enseignement et de Recherche (Lecturer) at l’ENSAM.
2000- 2001: Postdoc at Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, Italy.
2001-2008: Assistant professor, Università del Salento, Lecce, Italy
2008- 2014 : Professor, ENSAM, Laboratoire DynFluid
2014- 2015 : Associate professor, Università del Salento, Italy
2015-2020: Professor, ENSAM, Laboratoire DynFluid
2020-présent : Professor, Sorbonne Université, Institut Jean Le Rond D’Alembert
Main responsibilities (last 5 years)
2016-2019: Coordinator of the ENSAM Research Network « Computational Science and Engineering »
2018-2020: Member and vice-President of the board of Directors (Conseil d’Administration) of Arts et Métiers Paris Tech. Vice-President.
March 2022-: Member of the Counsel of Department of undergraduate studies in Mechanics, Sorbonne University.
October 2022-: Assistant of the vice-dean for Research and Innovation of the Faculty of Sciences and Engineering (Engineering portfolio).
Main editorial and dissemination activities (last 5 years)
Associate Editor, International Journal of Heat and Fluid Flow, March 2023-
Associate Editor, Computers & Fluids, Mai 2022-
Member of the Editorial Board of “Scientific Reports” (Springer-Nature), Mechanical Engineering panel, November 2021-.
Member of the Editorial Advisory Board of “Flow, Turbulence and Combustion” (Springer), December 2021-.
Member of the Scientific committee of the Symposium of Applied Aerodynamics of AAAF since 2010.
Scientific Secretary (2022-present), Member of the Scientific committee (2012-present) and of the Executive Board (2018-present) of the International Conference of Computational Fluid Dynamics (ICCFD, https://www.iccfd.org/)
Coordinator of the ERCOFTAC Special Interest Group 54 "Machine Learning in Fluid Dynamics" (https://www.ercoftac.org/special_interest_groups/54-machine-learning-for-fluid-dynamics/)
Teaching
Principal teacher of several courses in fluid mechanics (Fundamentals of Fluid Mechanics, Hydraulics, Aerodynamics, Gasdynamics, Computational Fluid Dynamics, Turbulence, Turbulence modelling), applied mathematics (Numerical Analysis, Fundamentals of Statistics, Calculus, Uncertainty Quantification) and energetics (Thermal Power Systems, Renewable Energies) since 2001 (more than 4000 hours of teaching experience, Bachelor, Master of Engineering, Master of Science and Doctoral levels). Most of my courses are taught in French and in English. In the past, I also gave courses in Italian and Spanish.
PUBLICATIONS
Some recent publications are given below (international journal publications and some Invited lectures, last 5 years). For a more complete list see my ReserchGate page:
https://www.researchgate.net/profile/Paola-Cinnella
Most publications are downloadable from ResearchGate, or from the open repository: https://hal.science/search/index?q=cinnella
International peer-reviewer journals
- Edeling W.N., Schmelzer M., Dwight R., Cinnella P. Bayesian predictions of Reynolds-Averaged Navier-Stokes uncertainties using Maximum a Posteriori estimates. AIAA J 56(5) :2018-2029 (2018). DOI10.2514/1.J056287.
- Edeling W.N., Iaccarino G., Cinnella P., « Data-free et data-driven RANS predictions with quantified uncertainty », Flow, Turbulence and Combustion, Vol. 100, No. 3, pp. 593-616, 2018
- Bufi E., Cinnella P. « Preliminary design method for dense-gas supersonic axial turbine stages », ASME Journal of Engineering for Gas Turbines and Power, Vol. 140, No. 11, pp. 112605, 2018. DOI 10.1115/1.4039837
- Sciacovelli L, Cinnella P, Gloerfelt X., «A priori tests of RANS models for turbulent channel flows of a dense gas», Flow, Turbulence and Combustion, Vol. 101, pp. 295–315, 2018.
- Gloerfelt X., Cinnella P., «Large Eddy Simulation requirements for the flow over periodic hills», Flow, Turbulence and Combustion, Vol. 103, No. 1, pp. 55-91, 2019.
- Merle X., Cinnella P., «Robust prediction of dense gas flows under uncertain thermodynamic models», Reliability Engineering and System Safety, Vol. 183, No. 3, pp. 400-421, 2019.
- Xiao H., Cinnella P., «Quantification of Model Uncertainty in RANS Simulations: A Review», Progress in Aerospace Sciences, Vol. 108, pp. 1-31, 2019.
- Menasria A., Brenner P., Cinnella P., «Improving the treatment of near-wall regions for multiple-correction k-exact schemes», Computers & Fluids, Vol. 181, pp. 116-134, 2019.
- Schmeltzer M., Dwight R., Cinnella P., «Discovery of Algebraic Reynolds-stress Models using Sparse Symbolic Regression», Flow, Turbulence and Combustion,Vol. 104, No. 2–3, pp. 579–603, 2019
- Hoarau J.-Ch., Cinnella P., Gloerfelt X., «Large Eddy Simulation of turbomachinery flows using a high-order Implicit Residual Smoothing scheme», Computers & Fluids, Vol. 198, pp. 104395, 2020.
- De Zordo-Banliat M., Merle X., Dergham G., Cinnella P., «Bayesian model-scenario averaged preditions of compressor cascade flows under uncertain turbulence models», Computers & Fluids, Vol. 201, pp. 104473, 2020.
- Gloerfelt X., Robinet J.C., Sciacovelli L., Cinnella P., Grasso F., «Dense gas effects on compressible boundary layer stability», Journal of Fluid Mechanics, Vol. 893, pp. A19, 2020.
- Sciacovelli L., Gloerfelt X., Passiatore D., Cinnella P., Grasso F., «Numerical investigation of high-speed boundary layers of dense gases», Flow, Turbulence and Combustion, Vol.105, pp. 555–579, 2020.
- Serafino A., B. Obert, Vergé L., Cinnella P., « Robust optimization of an Organic Rankine Cycle for geothermal application », Renewable Energy, 161, 2020.
- Serafino A., Obert B., Cinnella P., « Multi-Fidelity Gradient-Based Strategy for Robust Optimization in Computational Fluid Dynamics”, Algorithms, 13:248, 2020.
- Hoarau J.-Ch., Cinnella P., Gloerfelt X., « Large Eddy Simulations of strongly non ideal compressible flows through a transonic cascade », Energies 14(3):772, 2021.
- Passiatore D., Sciacovelli L., Cinnella P., Pascazio G., “Finite-rate chemistry effects in turbulent hypersonic boundary layers: A direct numerical simulation study”. Phys. Rev. Fluids 6, 054604, 2021
- Sciacovelli L., Passiatore D., Cinnella P., Pascazio G., Sciacovelli L., Passiatore D., Cinnella P., Pascazio G., “Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations”, Computers & Fluids 230(11):105134, 2021
- De Zordo-Banliat M., Merle X., Dergham G., Cinnella P., “Estimates of turbulence modeling uncertainties in NACA65 cascade flow predictions by Bayesian Model-Scenario Averaging”, International Journal of Numerical Methods for Heat and Fluid Flow, October 2021, à paraître. DOI: 10.1108/HFF-08-2021-0524
- Ben Hassan-Saidi I., Schmelzer M., Cinnella P., Grasso F., “CFD-driven Symbolic Identification of Algebraic Reynolds-Stress Models”, Journal of Computational Physics, 457:111037, 2022.
- Passiatore D., Sciacovelli L., Cinnella P., Pascazio G., “Thermochemical nonequilibrium effects in turbulent hypersonic boundary layers”. Journal of Fluid Mechanics, 941:A21, 2022.
- Cherroud S., Merle X., Cinnella P., Gloerfelt X., “Sparse Bayesian Learning of Explicit Algebraic Reynolds-Stress models for turbulent separated flows”, International Journal of Heat and Fluid Flow, Volume 98, December 2022, 109047
- Serafino A., Obert B., Cinnella P., “Multi-Fidelity Robust Design Optimization of an ORC Turbine for High Temperature Waste Heat Recovery”, Energy. Vol. 269, 126538.
- Matar C., Cinnella P., Gloerfelt X., Reinker F., aus der Wiesche S., “Investigation of non-ideal gas flows around a circular cylinder”. Energy. Volume 268, 1 April 2023, 126563.
- Passiatore D., Sciacovelli L., Cinnella P., Pascazio G., "Shock impingement on a transitional hypersonic high-enthalpy boundary layer". Physical Review Fluids, 8, 044601, 2023.
- Hake L., aus der Wiesche S., Sundermeier S., Cakievski L., Baumer J., Cinnella P., Matar C., Gloerfelt G., “Hot-wire anemometry in high subsonic organic vapor flows”. ASME Journal of Turbomachinery, 145(9): 091010, 2023.
- Amarloo A., Cinnella P., Iosifidis A., Forooghi P., Abkar M., « Data-driven Reynolds stress models based on the frozen treatment of Reynolds stress tensor and Reynolds force vector”. Physics of Fluids 1 July 2023; 35 (7): 075154.
- Stöcker, Y., Golla, C., Jain, R., Frölich, J., Cinnella, P., “DNS‑Based Turbulent Closures for Sediment Transport Using Symbolic Regression”. Flow, Turbulence and Combustion, https://doi.org/10.1007/s10494-023-00482-7, 2023
- Gloerfelt X., Bienner A., Cinnella P., « High-subsonic boundary-layer flows of an organic vapour”, Journal of Fluid Mechanics, Vol. 971, A633, 2023.
- Cinnella, P. and Gloerfelt, X., "Insights into the turbulent flow of dense gases through high-fidelity simulations". Computers & Fluids, Vol. 267, 106067, 2023.
- Matar, C. Gloerfelt, X. and Cinnella, P., “Numerical investigation of transonic non-ideal gas flows around a circular cylinder at high Reynolds number”, Flow, Turbulence and Combustion, 2023. https://doi.org/10.1007/s10494-023-00496-1.
- Bienner, C., Gloerfelt, X., Cinnella, P., “Leading-edge effects on freestream turbulence induced transition of an organic vapor”, Flow, Turbulence and Combustion, 2023. https://doi.org/10.1007/s10494-023-00499-y.
- De Zordo-Banliat, M., Dergham, G., Merle, X., Cinnella, P., "Space-dependent turbulence model aggregation using machine learning". Journal of Computational Physics, 497, 15 January 2024, 112628.
- Sciacovelli, L., Cannici, A., Passiatore, D., Cinnella, P., "A priori tests of turbulence models for compressible flows", 2023. Accepted for publication in the International Journal of Numerical Methods for Heat and Fluid Flows. In press.
- Passiatore, D., Sciacovelli, L. Cinnella, P., Pascazio, G., "Evaluation of a high-order central-difference solver for highly compressible flows out of thermochemical equilibrium". Computers & Fluids, 269, 30 January 2024, 106137.
- Bienner, A., Gloerfelt, X., Yalçin, Ö., Cinnella, P., « Multiblock parallel high-order implicit residual smoothing time scheme for compressible Navier–Stokes equations”. Computers & Fluids, 269, 30 January 2024, 106138.
- Buffa, V., Salaün, W., & Cinnella, P. (2024). Influence of posture during gliding flight in the flying lizard Draco volans. Bioinspiration & Biomimetics. In press https://doi.org/10.1088/1748-3190/ad1dbb
Invited lectures and schools
- Merle, P. Cinnella, “An introduction to Bayesian methods for the calibration of CFD models (part 1)”. Lecture series on Uncertainty Quantification in Computational Fluid Dynamics. Lecture Series 2018-2019, STO-AVT 326, 17-19 Octobre 2018, von Karman Institute for Fluid Dynamics
- Merle, P. Cinnella, “Application examples: calibration of RANS models and thermodynamic models for real gases (part 2)”. Lecture series on Uncertainty Quantification in Computational Fluid Dynamics. Lecture Series 2018-2019, STO-AVT 326, 17-19 Octobre 2018, von Karman Institute for Fluid Dynamics
- Cinnella, “Quantification and reduction of epistemic uncertainties in flow simulations: tackling the turbulence modeling dilemma”. Journée Scientifique de l’Association ARISTOTE “Mécanique déterministe ou incertitudes : Où en est-on avec F= M γ ? - Ça passe ou ça casse ?”, Ecole Polytechnique, Palaiseau, 21 Février 2019
- Cinnella, “Data-driven discovery and uncertainty quantification of turbulence models for Fluid Dynamics”, Séminaire « Saisir le Mouvement », initialement prévu à l’Institut Henri Poincaré le 30/4/2020 et reporté au 25/11/2020. https://seminaire.phimeca.com/ (online)
- Cinnella, « Real-Gas Effects in High-Speed Turbulent Flows: From Power Plants to Hypersonic Vehicles”, Fluid Mechanics Seminar, Stanford University (online), 4 may 2021. https://web.stanford.edu/group/fpc/cgi-bin/fpcwiki/uploads/Main/HomePage/fmseminar-spring2021.pdf
- Cinnella, “Introduction to Bayesian Calibration and Bayesian Model Averaging”. Ecole d’été CEA/EDF/INRIA "Multi-fidelity, multi-level, model selection/aggregation: how the presence of several versions of a code can improve the prediction of complex phenomena. », Paris, 14-18 june 2021.
- Cinnella, “Data-driven symbolic identification of turbulence models and perspectives for the quantification of model-form uncertainties”, Keynote Lecture, Symposium on Model-Consistent Data-driven Turbulence Modeling, June 22nd 2021 (online). http://turbgate.engin.umich.edu/symposium/assets/files/pdfs21/SymposiumAgenda.pdf
- Cinnella, « Bayesian machine learning for turbulence model discovery and uncertainty quantification”, Invited Lecture, IUTAM Symposium on Data-driven modeling and optimization in fluid mechanics, 15-17 June 2022, Aarhus, Danemark. https://conferences.au.dk/iutam/invited-speakers
- Cinnella, « Bayesian machine learning for data-enhanced CFD», NASA Advanced Supercomputing Division, Advanced Modeling and Simulation (AMS) Seminars, Online, December 8th, 2022.
https://www.nas.nasa.gov/pubs/ams/2022/12-08-22.html - Cinnella, « Synergy of high-fidelity simulations and machine learning for turbulence modelling», Keynote Lecture at VKI Symposium of PhD Research, Von Karman Institut for Fluid Dynamics, Rhode-Saint-Genèse, March 9th, 2023. https://www.researchgate.net/publication/369113084_Synergy_of_high-fidelity_simulations_and_machine_learning_for_turbulence_modelling?channel=doi&linkId=640a193e66f8522c3890736d&showFulltext=true
- Cinnella, « Turbulence modeling: artificial vs human intelligence », Workshop: data-driven methods in fluid mechanics, Leeds Institut for Fluid Dynamics, UK, 30-31st March 2023. https://www.eventbrite.co.uk/e/workshop-data-driven-methods-in-fluid-dynamics-tickets-427809177767
- Cinnella, « Machine-learning-assisted modeling of turbulence: current status and perspectives», 14th ETMM Symposium, Barcelona, Spain, September 6th -8th, 2023
- Cinnella, “ Data-driven turbulence Modeling,”, von Karman Institute / ULB Lecture Series : « Machine Learning for Fluid Mechanics: Analysis, Modeling, Control and Closures”, Brussels, 29 January-2 February 2024. https://www.datadrivenfluidmechanics.com/
- Cinnella “Data-driven correction and uncertainty quantification of turbulence models using Bayesian learning and multi-model ensembles”. SEMINAR++ Scientific Machine Learning (Semester Programme), CWI, Amsterdam, the Netherlands. 6-7 November 2023. https://www.cwi.nl/en/events/cwi-research-semester-programs/research-programmes-in-2023/research-semester-programme-on-scientific-machine-learning/seminar-scientific-machine-learning-semester-programme/