

Description PhénoménologiqueOrage Batchelor,
having been recently
elected FRS, in his
office at the old
Cavendish
Laboratory, October
1956

Description Phénoménologique

Grandeurs caractéristiques

Théorie	Kolmogorov	Batchelor	Obukhov–Corrsin
Hyp. similitude	1 (b), $3(a)$, $3(b)$	1(a), 1(b)	1(b), 2
Variables	$\varepsilon_T, \varepsilon, \nu$	$\varepsilon_T, \tau_\eta, \kappa$	$\varepsilon_T, \varepsilon, \kappa$
Longueur	η	$\eta_B = \sqrt{\kappa \tau_\eta} = \eta P r^{-1/2}$	$\eta_{OC} = (\kappa^3/\varepsilon)^{1/4} = \eta P r^{-3/4}$
Temps	$ au_{\eta}$	$\tau_B = \tau_\eta$	$\tau_{OC} = \sqrt{\kappa/\varepsilon} = \eta P r^{-1/2}$
Scalaire	$\Sigma_{\eta} = \sqrt{\varepsilon_T \tau_{\eta}}$	$\Sigma_B = \Sigma_\eta$	$\Sigma_{OC} = \varepsilon_T \sqrt{\kappa/\varepsilon} = \Sigma_\eta P r^{-1/4}$
UNIVERSITE		113	Che

