Magnétohydrodynamique

4AE04- Approche optimale et couplage multiphysique

thomas.gomez@upmc.fr

Insitut Jean Le Rond d'Alembert, UPMC

January 24, 2014

◆□▶ ◆□▶ ◆豆▶ ◆豆 り९℃

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction Principes fondamentaux Magnétohydrodynamique Solutions analytiques en canal plan

Plan du cours

Partie 1: La magnétohydrodynamique

- Introduction
- Principes fondamentaux
- Magnétohydrodynamique
- Solutions analytiques pour les écoulements MHD en canal
- f 5 Solutions à grand nombre de Hartmann $Ha\gg 1$

Introduction

La magnétohydrodynamique

- Fluide conducteur : Equations Navier-Stokes + Maxwell
- A Hartmann 1937
 - Métaux liquides.
 - Influence d'un champ magnétique extérieur.
- Alfvén 1950
 - Milieux interstellaires.
 - Ondes d'Alfvén.
- 4 Géophysique
 - Effet dynamo
 - Terrestre, soleil, galactique

◆□▶ ◆□▶ ◆ = ▶ ◆ = り < ○</p>

thomas.gomez@upmc.fr

MHD – 4AE04

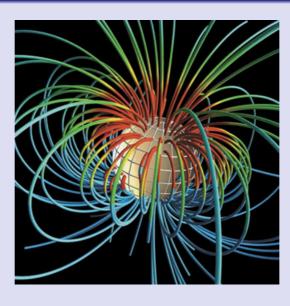
Introduction

Principes fondamentaux Magnétohydrodynamique Solutions analytiques en canal plan Historique Exemples

Principes fondamentaux

Ligne de champ magnétique et vent solaire

Ejection solaire



Simulation MHD

200

thomas.gomez@upmc.fr

MHD – 4AE04

Introduction

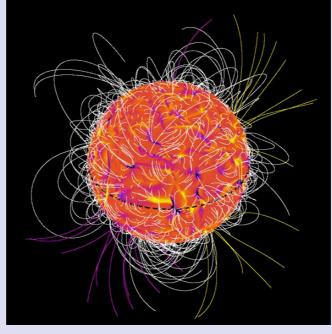
Principes fondamentaux Magnétohydrodynamique Solutions analytiques en canal plan

Historique Exemples

Principes fondamentaux

Ejection solaire

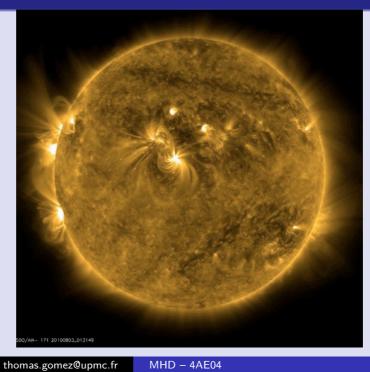
Dynamo Solaire



thomas.gomez@upmc.fr

MHD – 4AE04

Ejection solaire



Dynamo Solaire

MHD – 4AE04

200

Introduction

Principes fondamentaux Magnétohydrodynamique Solutions analytiques en canal plan Historique Exemples

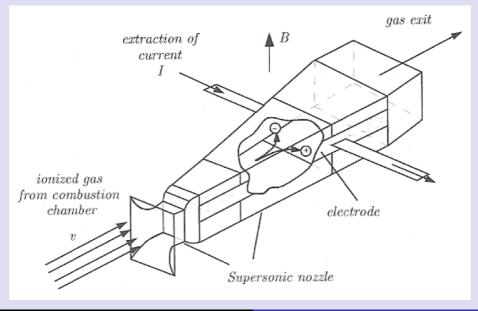
Introduction

La magnétohydrodynamique

- Sciences de l'ingénieur
 - Contrôle et optimisation par effet MHD
 - Génie des procédés
 - Fusion nucléaire

Principe du convertisseur de puissance

Energie électrique ⇒ Energie électrique



thomas.gomez@upmc.fr

MHD – 4AE04

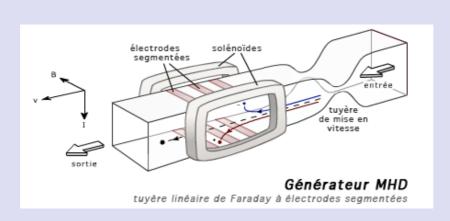
Introduction

Principes fondamentaux Magnétohydrodynamique Solutions analytiques en canal plan Historique Exemples

Principes fondamentaux

Principe du convertisseur de puissance

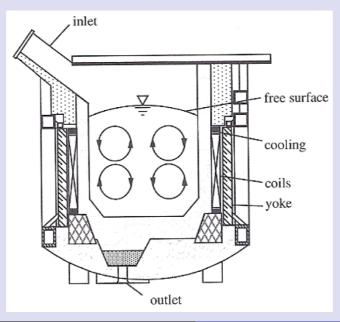
Energie électrique ⇒ Energie électrique



200

Melangeur Novaux ferrigu

Noyaux ferrique et bobine



thomas.gomez@upmc.fr

MHD – 4AE04

Introduction

Principes fondamentaux Magnétohydrodynamique Solutions analytiques en canal plan Historique Exemples

Principes fondamentaux

Tokamak

Fusion nucléaire

200

200

Introduction

Systèmes industriels

- Pompes MHD (induction/conduction)
- Mélangeurs MHD, champs fluctuants
- Contrôle d'écoulement par propulseurs MHD
- Soudure plasma
- Four à induction
- 6 Générateur Plasma
- Confinement du plasma dans Tokamak

thomas.gomez@upmc.fr

Processus d'optimisation MHD

- Transport MHD
 - croissance de cristaux
 - bain galvanique
 - homogénéisation
- Mélange MHD
- 8 Electromagnétique
 - création de poudre métallique
 - moulage continue par dépôt de surface
- Traitement de surface

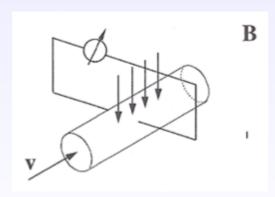
MHD - 4AE04

Introduction

Principes fondamentaux Magnétohydrodynamique Solutions analytiques en canal plan Historique Exemples

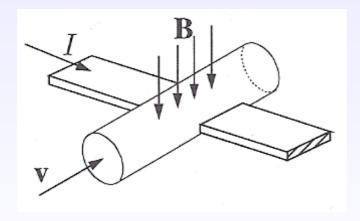
Exemple : Débimètre

Exemple: Débimètre MHD pour métaux liquides



Exemple: Pompe à conduction

Exemple: Pompe à conduction



◆□▶◆□▶◆壹▶◆壹▶ 壹 かQ♡

thomas.gomez@upmc.fr

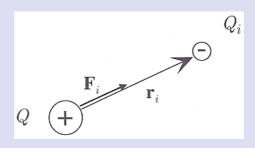
MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.1 Principes fondamentaux : electrodynamique

Force electrostatique



1 Loi de Coulomb

$$F_i = -\frac{1}{\varepsilon} \frac{1}{4\pi} \frac{Q \cdot Q_i}{r_i^3} \mathbf{r}_i$$

- ε permittivité du matériau : $\varepsilon_0 = 8.854.10^{-12} As/(Vm)$
- A : Ampère
- V : Volt
- C Coulomb $\iff A.s$

Force electrostatique

• Le champ électrique **E** est lié au nombre de charges qui le génère

$$\mathbf{E} = -\frac{1}{\varepsilon} \sum_{i} \frac{1}{4\pi} Q_{i} r_{i}^{-3} \mathbf{r}_{i}$$

• La force electrostatique s'écrit alors

$$F = QE$$

- La loi de Coulomb peut s'interpréter comme étant la force subit par la charge Q dans le champ électrique \mathbf{E} .
- La dimension du champ électrique est : $[\mathbf{E}] = N/(As)$

◆□▶◆□▶◆≣▶ ■ りQ@

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique
Electromagnétisme
Dynamique des fluides

2.1 Principes fondamentaux : electrodynamique

Force electrostatique

Formulation intégrale

$$oxed{\mathbf{E}} = -rac{1}{arepsilon} \int_V rac{1}{4\pi} q r^{-3} \mathbf{r} dv$$

 $\it q$: densité volumique de charges.

Le champ **E** dérive d'un potentiel

- Le travail de la force \mathbf{F} quand on déplace la charge Q le long d'une trajectoire C fermée est nulle.
- Démonstration (Théorème de Stokes)

$$\frac{1}{Q} \int_{C} \underbrace{\mathbf{F} \cdot \mathbf{t}}_{\mathsf{travail}} ds = \int_{C} \mathbf{E} \cdot \mathbf{t} ds = \int_{A} (\nabla \times \mathbf{E}) \cdot \mathbf{n} dA = 0$$

Cette relation étant vraie pour C arbitraire \Longrightarrow **E** est irrotationel

$$abla extbf{x} extbf{E} = 0$$

ullet Il existe un potentiel ϕ tel que

 $\mathbf{E} = -\nabla \Phi$

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique
Electromagnétisme
Dynamique des fluides

2.1 Principes fondamentaux : electrodynamique

Le champ E dérive d'un potentiel

• La différence de potentiel (ddp) U entre deux points de l'espace $\mathbf{x_1}$ et $\mathbf{x_2}$ s'écrit alors

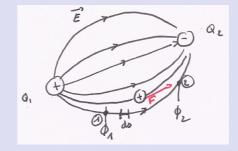
$$U = \int_{\mathsf{x}_1}^{\mathsf{x}_2} \mathbf{E} \cdot \mathbf{t} ds = \Phi_1 - \Phi_2$$

200

Densité de charge

- Les charges électriques sont à l'origine des champs électriques.
- On peut définir une relation entre densité de charge électrique q

et champ électriques **E**



$$abla \cdot (arepsilon \mathsf{E}) = q$$

• C'est une conséquence directe de la relation

$$\mathbf{E} = -rac{1}{arepsilon} \int_{V} rac{1}{4\pi} q r^{-3} \mathbf{r} dv$$

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

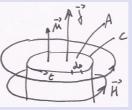
Electrodynamique Electromagnétisme Dynamique des fluides

Principes fondamentaux

2.1.b Electromagnétisme

- Les **champs magnétiques** ont historiquement d'abord été générés par les aimants permanents (matériaux ferromagnétiques).
- Puis par la production de courants

électriques dans les conducteurs.



Par exemple dans le voisinage d'un fil circulaire dans lequel circule un courant.

• Loi d'Ampère : L'intensité du champ magnétique intégrée le long d'un contour fermé est équivalent au flux de courant à travers la surface délimitée par le contour

$$\int_C \mathbf{H} \cdot \mathbf{t} ds = \int_A \mathbf{j} \cdot \mathbf{n} dA$$

Loi d'Ampère locale

• Pour les processus à variation **lente** (très inférieure à la vitesse de la lumière $c \sim 2.9979.10^8 m.s^{-1}$)

$$\nabla \times \mathbf{H} = \mathbf{j}$$

- H champ magnétique généré
- \mathbf{j} densité de courant avec $[\mathbf{j}] = A$.
- Démonstration : utilisation de la formule de Stokes

$$\int_{C} \mathbf{H} \cdot \mathbf{t} ds = \int_{A} (\nabla \times \mathbf{H}) \cdot \mathbf{n} dA$$

◆□▶◆□▶◆≣▶ ■ りQ@

thomas.gomez @upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.1 Principes fondamentaux : electrodynamique

Loi d'Ampère locale

• Pour les processus à variation rapide

$$abla imes \mathbf{H} = \mathbf{j} + \underbrace{\frac{\partial \varepsilon \mathbf{E}}{\partial t}}_{\text{courants de déplacement}}$$

- H champ magnétique généré
- j densité de courant avec [j] = A
- **E** champ électrique avec [E] = V/m.

Conservation des charges

• En prenant la divergence de la loi d'Ampère locale

$$abla extbf{H} = \mathbf{j} + rac{\partial arepsilon \mathbf{E}}{\partial t}$$

on obtient

$$\nabla \cdot \mathbf{j} = 0$$

Forme intégrale

$$\int_{\mathcal{A}} \mathbf{j} \cdot \mathbf{n} dA = \int_{\mathcal{V}} \nabla \cdot \mathbf{j} d\nu = 0$$

- Interprétation : Les charges ne s'accumulent pas.
- Le flux des courants électriques à travers une surface S fermée dans nullo (Loi do Kirchhoff dans un circuit álastrigua) nas.gomez@upmc.fr MHD - 4AE04 thomas.gomez@upmc.fr

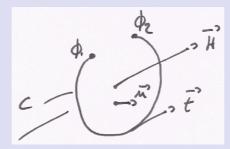
Principes fondamentaux Solutions analytiques en canal plan

Electromagnétisme

2.1 Principes fondamentaux : electrodynamique

Loi de Faraday

• Observation : Création d'une DDP aux extrémités d'une boucle ouverte à travers laquelle varie le champ magnétique (déplacement du circuit ← variation temporelle du champ magnétique)



Forme intégrale

$$\phi_1 - \phi_2 = \int_C \mathbf{E} \cdot \mathbf{t} ds = -rac{\partial}{\partial t} \left[\mu \int_A \mathbf{H} \cdot \mathbf{n} dA
ight]$$

Loi de Faraday

• Forme intégrale

$$\boxed{\phi_1 - \phi_2 = \int_C \mathbf{E} \cdot \mathbf{t} ds = -\frac{\partial}{\partial t} \left[\mu \int_A \mathbf{H} \cdot \mathbf{n} dA \right]}$$

- μ perméabilité magnétique, $\mu_0 = 4\pi 10^{-7} V.s(Am)^{-1}$ pour le vide.
- Pour beaucoup de matériaux $\mu \sim \mu_0$, sauf pour les matériaux ferritiques pour lesquels il y a un facteur $\sim 10^3$.
- Loi de Lenz : Le signe → signifie que la DDP induite impose aux courants de contrecarrer la variation de flux magnétique.

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.1 Principes fondamentaux : electrodynamique

Loi de Faraday

Forme différentielle

$$abla imes \mathbf{E} = -rac{\partial}{\partial t} \left(\mu \mathbf{H}
ight)$$

- μ perméabilité magnétique, $\mu_0 = 4\pi 10^{-7} \, V.s(Am)^{-1}$ pour le vide
- Par convention : On appelle induction magnétique le tenseur
 B d'ordre 1 tel que

$$\mathbf{B} = \mu \mathbf{H}$$

Loi de Faraday

Conséquence:

Les lignes de champs magnétique sont des courbes fermées.

• démonstration : On prend la divergence de la loi de Faraday

$$abla \cdot (
abla imes \mathbf{E}) = -rac{\partial}{\partial t} \left(
abla \cdot (\mu \mathbf{H})
ight)$$

On obtient

$$\nabla \cdot \mathbf{B} = constante \Longrightarrow |\nabla \cdot \mathbf{B} = 0| \tag{1}$$

en supposant qu'à t = 0 tous les courants sont nuls.

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.1 Principes fondamentaux : electrodynamique

Ligne de champ magnétique et vent solaire

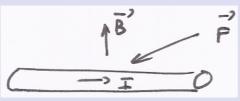
Force de Laplace

Observation :

Un champ magnétique ${\bf B}$ donné agit sur un conducteur linéaire de longueur L parcouru par une densité de courant ${\bf I}$ par le biais d'une force ${\bf F}$ telle que

$$F = LI \times B$$

• F est la force de Laplace ou Lorentz



thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.1 Principes fondamentaux : electrodynamique

Force de Laplace

- Forme différentielle
- I est défini comme le flux de densité de courant j à travers un élément de surface dA tel que

$$I = idA$$

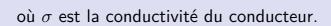
• La forme différentielle décrivant la force de Laplace par unité de volume s'écrit donc

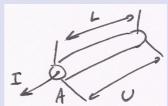
 $\overline{\mathbf{f_L} = \mathbf{j}} \times \mathbf{B}$

Loi d'Ohm pour les conducteurs en mouvement

• Conducteur fixe : Un champ électrique E* dans un conducteur fixe crée une densité de courant électrique j telle que

$$\mathbf{j} = \sigma \mathbf{E}^*$$





• Pour un conducteur de section A et de longueur L avec

•
$$\mathbf{j} = \sigma \mathbf{E}^*$$

• $\|\mathbf{E}^*\| = U/L$ $\Longrightarrow I = \int_A \mathbf{j} \cdot \mathbf{n} dA = \frac{\sigma A}{L} U = \frac{U}{R}$

I est le courant et $R = L/(A\sigma)$ la résistance électrique

200

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.1 Principes fondamentaux : electrodynamique

Loi d'Ohm pour les conducteurs en mouvement

- Considérons un conducteur en mouvement à une vitesse **v** dans le référentiel du laboratoire.
- Conducteur rectiligne soumis

à un champ magnétique B

 Un observateur attaché au conducteur, i.e. dans le référentiel du conducteur, observe une DDP entre les extrémités du conducteur, créé par le champ électrique E* exprimé dans le référentiel du conducteur. Ce champ s'écrit à l'aide des quantités exprimées dans le référentiel du laboratoire E, v et B

$$\mathbf{E}^{\star} = \mathbf{E} + \underbrace{\mathbf{v} \times \mathbf{B}}_{\text{Champ induit}}$$

Loi d'Ohm généralisée

- Le champ électrique induit par le mouvement produit un champ électrique via la Force de Laplace.
- La loi d'Ohm généralisée s'écrit donc pour la densité de courant j

$$\mathbf{j} = \sigma \mathbf{E}^* = \sigma \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right)$$

- Hypothèses de validité :
 - vitesse $v \ll c$, c vitesse de la lumière.
 - vitesse des porteurs de charge(électrons, ions) beaucoup plus petite que la vitesse du conducteur **v** (on néglige l'effet Hall).
 - On néglige les courants de déplacement électrique, *càd* les porteurs de charges se déplacent sans inertie.

◆□▶ ◆□▶ ◆豆▶ ◆豆 り९℃

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.1 Principes fondamentaux : electrodynamique

Conditions électromagnétiques aux interfaces

On utilise

- la conservation de la charge électrique,
- la loi d'Ampère,
- la loi de Faraday.

• Pour le champ magnétique:

$$\nabla \cdot \mathbf{B} = 0 \Longrightarrow 0 = \int_{V} \nabla \cdot \mathbf{B} dv = \int_{S} \mathbf{B} \cdot \mathbf{n} ds = 0$$

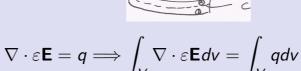
 En faisant tendre l'épaisseur du cylindre (volume) vers zéro, on obtient

$$\overline{(\mathbf{B}_1 - \mathbf{B}_2) \cdot \mathbf{n} = 0}$$
 avec \mathbf{n} normale de 2 vers 1

Conditions électromagnétiques aux interfaces

On utilise la conservation de la charge électrique, la loi d'Ampère et la loi de Faraday.

• Pour le champ électrique :



 En faisant tendre l'épaisseur du cylindre (volume) vers zéro, on obtient

$$\boxed{(arepsilon_1 {\sf E}_1 - arepsilon_2 {\sf E}_2) \cdot {\sf n} = q^\star}$$
 avec ${\sf n}$ normale de 2 vers 1

où q^* est la densité de charge à l'interface.

Rmq 1 : q^* est généralement négligeable dans les bons conducteurs

Rma 2 · a* peut jouer un rôle dans les semi-conducteurs

thomas.gomez@upmc.fr

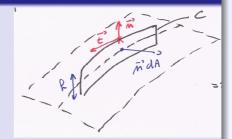
Principes fondamentaux Solutions analytiques en canal plan

Electromagnétisme

2.1 Principes fondamentaux : electrodynamique

Conditions électromagnétiques aux interfaces

Partie rotationnelle du champ électrique



Faraday :
$$\phi_1 - \phi_2 = \int_C \mathbf{E} \cdot \mathbf{t} ds = -\frac{\partial}{\partial t} \left(\mu \int_A \mathbf{H} \cdot \mathbf{n} dA \right)$$

$$\Longrightarrow \frac{\partial}{\partial t} \int_{A} \mathbf{B} \cdot \mathbf{n} dA = -\int_{C} \mathbf{E} \cdot \mathbf{t} ds$$

• En faisant tendre l'épaisseur h du parcours C vers zéro, on obtient

$$\lim_{h\to 0} \int_C \mathbf{E} \cdot \mathbf{t} ds = 0 \Longrightarrow \boxed{(\mathbf{E}_1 - \mathbf{E}_2) \cdot \mathbf{t} = 0}$$

) a (~

Conditions électromagnétiques aux interfaces

• Partie rotationnelle du champ électrique :

La composante tangentielle du champ électrique **E** est donc continue à la traversée de l'interface. On préfère écrire cette propriété en fonction du vecteur normale **n** qui est défini de façon unique.

$$\mathbf{n}\times(\mathbf{E}_1-\mathbf{E}_2)=0$$

◆□▶ ◆□▶ ◆ ≣ ▶ ● ■ り९℃

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.1 Principes fondamentaux : electrodynamique

Conditions électromagnétiques aux interfaces

• Flux de courant entre deux conducteurs

$$\nabla \cdot \mathbf{j} = 0 \Longrightarrow 0 = \int_{V} \nabla \cdot \mathbf{j} dv = \int_{S} \mathbf{j} \cdot \mathbf{n} dA$$

• En faisant tendre la hauteur du volume de contrôle vers 0

$$\Longrightarrow \boxed{(\mathbf{j}_1 - \mathbf{j}_2) \cdot \mathbf{n} = 0}$$

On a donc continuité de la composante normale du flux de charge à travers l'interface.

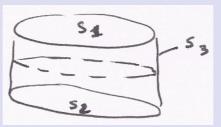
Conditions électromagnétiques aux interfaces

Flux de courant entre deux conducteurs
 Dans le cas où un des deux matériaux en contact est très fortement conducteur :

$$\sigma \longrightarrow +\infty$$

Les effets électrodynamiques sont confinés dans une zone très proche paroi.

$$\nabla \cdot \mathbf{j} = 0 \Longrightarrow \int_{V} \nabla \cdot \mathbf{j} dv = \int_{S_{1}} \mathbf{j} \cdot \mathbf{n} dA + \int_{S_{2}} \mathbf{j} \cdot \mathbf{n} dA + \int_{S_{3}} \mathbf{j} \cdot \mathbf{n} dA = 0$$



thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.1 Principes fondamentaux : electrodynamique

Conditions électromagnétiques aux interfaces

- L'intégral sur la surface S_3 correspond au courant qui s'échappe par la face latérale, tangentiellement à l'interface.
- En faisant tendre la hauteur du volume de contrôle vers 0

$$\Longrightarrow \boxed{ \left(\mathbf{j}_1 - \mathbf{j}_2 \right) \cdot \mathbf{n} = -
abla_{ au} \cdot \mathbf{I} }$$

οù

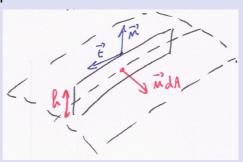
- ullet $abla_{ au}$ est le gradient dans le plan tangent et
- I représente la composante tangentielle du courant j intégrée sur la hauteur de couche limite (dans le matériau très conducteur).

Composante tangentielle du champ magnétique

Loi d'Ampère

$$\int_{A} (\nabla \times \mathbf{H}) \cdot \mathbf{n} dA = \int_{A} \mathbf{j} \cdot \mathbf{n} dA = \int_{C} \mathbf{H} \cdot \mathbf{t} ds$$

- Hypothèses :
 - Contact parfait
 - Pas de nappe de courant à l'interface



thomas.gomez @upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.1 Principes fondamentaux : electrodynamique

Composante tangentielle du champ magnétique

• En faisant tendre la hauteur h du volume de contrôle vers 0

$$h o 0 \Longrightarrow \boxed{(\mathbf{H}_1 - \mathbf{H}_2) \cdot \mathbf{t} = 0}$$
 ou $\boxed{\mathbf{n} \times (\mathbf{H}_1 - \mathbf{H}_2) = 0}$

On a donc continuité de la composante tangentielle du champ magnétique à travers l'interface.

Composante tangentielle du champ magnétique

Si le contact n'est pas parfait et qu'il existe des courants de surface, on obtient :

• On obtient pour $h \to 0$

$$\boxed{\mathbf{n}\times(\mathbf{H}_1-\mathbf{H}_2)=I}$$

ou

$$\boxed{\mathbf{n} \times \left(\frac{1}{\mu_1} \mathbf{B}_1 - \frac{1}{\mu_2} \mathbf{B}_2\right) = I}$$

où *I* est la densité de courant de surface à l'interface.

◆ロ → ◆昼 → ◆ き → り へ で

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.1 Principes fondamentaux : electrodynamique

Equations de Maxwell

• Equations

Faraday
$$\nabla \times \mathbf{E} = -\frac{\partial}{\partial t} (\mu \mathbf{H})$$
 $\nabla \cdot (\varepsilon \mathbf{E}) = q$
Ampère $\nabla \times \mathbf{H} = \mathbf{j} + \frac{\partial \varepsilon \mathbf{E}}{\partial t}$ $\nabla \cdot \mathbf{j} = 0$

Interfaces

		Т
В	$(\mathbf{B}_1 - \mathbf{B}_2) \cdot \mathbf{n} = 0$	$oxed{n} imes \left(rac{1}{\mu_1}B_1 - rac{1}{\mu_2}H_2 ight) = I$
E	$(arepsilon_1 \mathbf{E}_1 - arepsilon_2 \mathbf{E}_2) \cdot \mathbf{n} = q^\star$	$\mathbf{n}\times(\mathbf{E}_1-\mathbf{E}_2)=0$
j	$(\mathbf{j}_1 - \mathbf{j}_2) \cdot \mathbf{n} = 0$	-

Equation d'induction

C'est l'équation de transport pour le champ magnétique **B**, qui est à l'origine de la formulation incompressible des équations de la MHD :

- Loi d'Ohm \Longrightarrow $\mathbf{j} = \sigma \mathbf{E}^* = \sigma (\mathbf{E} + \mathbf{v} \times \mathbf{B})$ pour les fluides conducteurs en mouvement.
- Loi de Faraday $\Longrightarrow \nabla \times \mathbf{E} = \frac{\partial}{\partial t} \left[\mu \mathbf{H} \right]$ et $\nabla \cdot \mathbf{B} = 0$
- Continuité (conservation de la masse) : $\nabla \cdot \mathbf{v} = 0$
- Loi d'Ampère : $\mathbf{j} = \nabla \times \mathbf{H} = \nabla \times \left(\frac{1}{\mu}\mathbf{B}\right)$

$$\Longrightarrow \boxed{\frac{\partial}{\partial t}\mathbf{B} + (\mathbf{v} \cdot \nabla)\mathbf{B} = \frac{1}{\mu\sigma}\nabla^2\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{v}}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆 り९℃

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.1 Principes fondamentaux : electrodynamique

Equation d'induction

$$\Longrightarrow \underbrace{\frac{\partial}{\partial t}\mathbf{B} + (\mathbf{v} \cdot \nabla)\mathbf{B}}_{\text{Advection du champ magnétique}} = \underbrace{\eta \nabla^2 \mathbf{B}}_{\text{diffusion magnétique}} + \underbrace{(\mathbf{B} \cdot \nabla) \mathbf{v}}_{\text{Etirement}}$$

- Cette équation décrit l'évolution spatio-temporelle du champ magnétique.
- $\eta = 1/(\sigma \mu)$ est la diffusivité magnétique.
- $\eta \nabla^2 \mathbf{B}$ est un terme de diffusivité magnétique (par analogie avec la diffusivité thermique qui a la même dimension).
- $(\mathbf{B} \cdot \nabla)\mathbf{v}$ est le terme d'étirement des lignes de champ magnétique par les gradients de vitesse.

Equation d'induction sous forme Adimensionnée

$$\implies \underbrace{\frac{\partial}{\partial t}\mathbf{B} + (\mathbf{v} \cdot \nabla)\mathbf{B}}_{\text{Advection du champ magnétique}} = \underbrace{\frac{1}{Re_{\eta}}\nabla^{2}\mathbf{B}}_{\text{diffusion magnétique}} + \underbrace{(\mathbf{B} \cdot \nabla)\mathbf{v}}_{\text{Etirement}}$$

ullet où Re_n est le nombre de Reynolds magnétique :

$$Re_{\eta} = \mu \sigma L v_0 = \frac{L v_0}{\eta}$$

où toutes les variables sont adimensionnées.

$$v \longrightarrow v_0 v \quad , \qquad B \longrightarrow B_0 B$$

$$\nabla \cdot \longrightarrow \frac{1}{L} \nabla \cdot \quad , \qquad t \longrightarrow \frac{L}{v_0} t$$

thomas.gomez@upmc.fr MHD - 4AE04

200

Principes fondamentaux Solutions analytiques en canal plan

Electromagnétisme

2.1 Principes fondamentaux : electrodynamique

Equation d'induction sous forme Adimensionnée

$$\underbrace{\frac{\partial}{\partial t}\mathbf{B} + (\mathbf{v} \cdot \nabla)\mathbf{B}}_{\text{Advection du champ magnétique}} = \underbrace{\frac{1}{Re_{\eta}}\nabla^{2}\mathbf{B}}_{\text{diffusion magnétique}} + \underbrace{(\mathbf{B} \cdot \nabla)\mathbf{v}}_{\text{Etirement}}$$

- Remarques:
 - $Re_n \ll 1$ régime dominé par la diffusion magnétique \implies pas d'influence du champ de vitesse.
 - $Re_{\eta} > Re_{\eta_{\ critique}}$ croissance des petites fluctuations \Longrightarrow régime dynamo pour $Pr_{\eta} \ll 1$ ou $Pr_{\eta} \gg 1$.

Energie magnétique

- Les champs magnétiques stockent de l'énergie.
- A partir de l'équation d'induction on obtient

$$\frac{\mathbf{B}}{\mu} \cdot \frac{\partial}{\partial t} \mathbf{B} = -\frac{\mathbf{B}}{\mu} \cdot (\nabla \times \mathbf{E})$$

$$\implies \frac{\partial}{\partial t} \left[\frac{1}{2\mu} \mathbf{B}^2 \right] = -\nabla \cdot \underbrace{\left(\frac{\mathbf{E} \times \mathbf{B}}{\mu} \right)}_{\text{Vecteur}} - \underbrace{\frac{\mathbf{j}^2}{\sigma}}_{\text{Diffusion}} - \underbrace{\mathbf{v} \cdot (\mathbf{j} \times \mathbf{B})}_{\text{Travail}}_{\text{de la force de Laplace}}$$

 Equations des variations spatio-temporelles de l'énergie du champ magnétique par unité de volume

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides 990

9 Q (~

2.2 Principes fondamentaux : dynamique des fluides

Equations de conservation

Conservation de la masse

$$\nabla \cdot \mathbf{v} = 0$$

• Conservation de la quantité de mouvement (Navier-Stokes)

$$\rho \left[\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right] = -\nabla p + \rho \nu \nabla^2 \mathbf{v} + \mathbf{f} + \mathbf{j} \times \mathbf{B}$$

- p : pression
 - ρ : densité
 - **f** : force volumique extérieure
 - $\mathbf{j} \times \mathbf{B}$: Force de Laplace \equiv Terme de couplage Cinétique / Magnétique

Equations de conservation

• Force de Laplace

$$f_L \equiv j \times B$$

- f_L agit dans le plan perpendiculaire à B et à j.
- Force de Coulomb $q\mathbf{E}$ considéré comme négligeable par rapport à $\mathbf{f}_{\mathbf{L}}$. (Shercliff 1965).
- La loi d'Ampère $\mathbf{j} = \nabla \times \mathbf{H} \Longrightarrow$

$$\boxed{\mathbf{f_L} = \mathbf{j} \times \mathbf{B} = \frac{1}{\mu} \left(\nabla \times \mathbf{B} \right) \times \mathbf{B} = \frac{1}{\mu} \nabla \cdot \left(\mathbf{B} \mathbf{B} \right) - \nabla \frac{\mathbf{B}^2}{2\mu}}$$

• BB est un produit dyadique (tenseur d'ordre 2) .

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.2 Principes fondamentaux : dynamique des fluides

Equations de conservation

Tenseur des contraintes de Maxwell

$$\mathbf{M} = \frac{1}{\mu} \left[B_i B_k - \frac{1}{2} \mathbf{B}^2 \delta_{ik} \right]$$

• Force de Laplace

$$f_L = -\nabla \cdot [M]$$

Equation de Bernoulli MHD

• Ecoulement stationnaire, non visqueux, sous gravité, conducteur, soumis à un champ magnétique

$$-\nabla(\rho + \rho \frac{\mathbf{v}^2}{2} + \underbrace{\frac{1}{2\mu} \mathbf{B}^2}_{\text{Pression magnétique}}) + \rho \mathbf{g} = \mathbf{0}$$

- L'équation de Bernoulli MHD est obtenue en intégrant cette relation.
- $\frac{1}{2\mu}$ **B**² est appelée pression magnétique.

◆□▶ ◆□▶ ◆豆▶ ◆豆 り९℃

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.2 Principes fondamentaux : dynamique des fluides

Equation de Navier-Stokes sous forme Adimensionnée

Variables adimensionnées :

$$v \longrightarrow v_0 v$$
 , $j \longrightarrow \sigma v_0 B_0 j$ $p \longrightarrow p_0 p$ $\nabla \cdot \longrightarrow \frac{1}{l} \nabla \cdot$, $t \longrightarrow \frac{l}{v_0} t$ $f \longrightarrow (v_0^2/L) f$

$$\Longrightarrow \boxed{\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{v} + \mathbf{f} + N(\mathbf{j} \times \mathbf{B})}$$

- Re est le nombre de Reynolds : $Re = \frac{Lv_0}{\nu}$
- N le nombre de Stuart ou paramètre d'interaction : $N = \frac{\sigma L B_0^2}{\rho v_0}$

Nombres sans dimension

- Nombre de Reynolds : $Re = \frac{Lv_0}{\nu} = \frac{\text{Effets inertiels}}{\text{Effets visqueux}}$
- Nombre de Stuart ou paramètre d'interaction :

$$N = \frac{\sigma L B_0^2}{\rho v_0} = \frac{\text{Effets magn\'etiques}}{\text{Effets inertiels}}$$

Nombre de Hartmann :

$$Ha = LB_0 \sqrt{\frac{\sigma}{\rho v_0}} = \frac{\text{Effets magn\'etiques}}{\text{Effets visqueux}}$$

◆□▶◆□▶◆≣▶ ■ りQ@

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.2 Principes fondamentaux : dynamique des fluides

Equation de vorticité : $\nabla \times NS$

• Influence du champ magnétique sur la dynamique de la vorticité :

$$\frac{\partial \boldsymbol{\omega}}{\partial t} + \mathbf{v} \cdot \nabla \boldsymbol{\omega} = \frac{1}{Re} \nabla^2 \boldsymbol{\omega} + \boldsymbol{\omega} \cdot \nabla \mathbf{v} + \nabla \times [\mathbf{f} + N(\mathbf{j} \times \mathbf{B})]$$

• Analogie de Batchelor :

$$\underbrace{\frac{\partial}{\partial t}\mathbf{B} + (\mathbf{v}\cdot\nabla)\mathbf{B}}_{\text{Advection du champ magnétique}} = \underbrace{\frac{1}{Re_{\eta}}\nabla^{2}\mathbf{B}}_{\text{diffusion magnétique}} + \underbrace{(\mathbf{B}\cdot\nabla)\mathbf{v}}_{\text{Etirement}}$$

ullet Différence : $oldsymbol{\omega} =
abla imes oldsymbol{v}$ mais $oldsymbol{B}
eq
abla imes oldsymbol{v} imes oldsymbol{v}$!!!

Energie cinétique : $E = \frac{1}{2} \rho \mathbf{v}^2$

 \bullet $\mathbf{v} \cdot (NS) \Longrightarrow$

$$\frac{\partial}{\partial t} \left[\frac{1}{2} \rho \mathbf{v}^2 \right] = -\nabla \cdot \underbrace{\left[\mathbf{v} \left(p + \frac{1}{2} \rho \mathbf{v}^2 \right) - \mathbf{v} \cdot \mathbf{S} \right]}_{\text{Flux d'énergie}} + \underbrace{\mathbf{v} \cdot (\mathbf{f} + \mathbf{j} \times \mathbf{B})}_{\text{Travail des forces}} - \underbrace{\mathbf{D}}_{\text{Dissipation visqueuse}}$$

- Tenseur des contraintes visqueuses : $\mathbf{S} = 2\nu\mathbf{D}$
- Tenseur des déformations : $\mathbf{D} = [D_{ij}] = \frac{1}{2} [\partial_j v_i + \partial_i b_j]$
- Dissipation visqueuse : $\Phi = \mathbf{S} : \mathbf{D}$

◆□▶◆□▶◆≧▶◆≧▶ ≧ りへで

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.2 Principes fondamentaux : Equation de la chaleur

Energie thermique :

• Equation de conservation de l'énergie ⇒

$$\rho C_p \begin{bmatrix} \frac{\partial}{\partial t} T + \underbrace{\mathbf{v} \cdot \nabla T}_{\text{Convection}} \end{bmatrix} = \underbrace{\nabla \cdot (\lambda \nabla T)}_{\text{Diffusion}} + \underbrace{\frac{1}{\sigma} \mathbf{j}^2}_{\text{Dis-}} + \underbrace{\Phi}_{\text{Chauffage Source}}_{\text{par dis-}} + \underbrace{Q}_{\text{Ther-sipation}}_{\text{sipation Joule}}$$

- ρC_p : Capacité thermique
- \bullet λ : Conductivité thermique
- $\lambda/(\rho C_p)$: Diffusivité thermique

2.2 Principes fondamentaux : Equation de la chaleur

 $T \longrightarrow \Delta T_0 T$, $\Phi \longrightarrow \Phi_0 \Phi$, $Q \longrightarrow Q_0 Q$

Forme adimensionnée:

Variables adimensionnées :

$$\implies \frac{\partial}{\partial t} T + \underbrace{\mathbf{v} \cdot \nabla T}_{\text{Convection}} = \underbrace{\frac{1}{Pe} \nabla^2 T}_{\text{Diffusion}} + \underbrace{\frac{1}{E_c N \mathbf{j}^2}}_{\text{Dis-}} + \underbrace{\frac{1}{E_c N \mathbf{j}^2}}_{\text{Chauffage}} + \underbrace{\frac{Q}{E_c N \mathbf{j}^2}}_{\text{Source}}$$

- ullet $Pe = rac{
 ho \, C_{
 ho} \, v_0 \, L}{\lambda} = Re \cdot Pr$: Nombre de Peclet
- ullet $Pr =
 u/\kappa$: Nombre de Prandtl
- ullet $Ec=rac{v_0^2}{C_p\Delta T_0}=rac{{\sf Energie}}{{\sf Enthalpie}}$: Nombre d'Eckert

200

thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.2 Principes fondamentaux : Equation de la chaleur

Forme adimensionnée:

• Equation de conservation de l'énergie $\Longrightarrow \Phi_0 = Q_0 = \frac{\rho C_\rho v_0 \Delta T_0}{I}$

$$\frac{\partial}{\partial t}T + \underbrace{\mathbf{v} \cdot \nabla T}_{\text{Convection}} = \underbrace{\frac{1}{Pe}\nabla^2 T}_{\text{Diffusion}} + \underbrace{\frac{1}{E_cN\mathbf{j}^2}}_{\text{Dis-}} + \underbrace{\frac{1}{\Phi}}_{\text{Chauffage}} + \underbrace{\frac{Q}{\Phi}}_{\text{Source}}_{\text{Ther-sipation}}$$

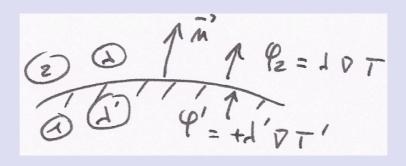
- $Pe = \frac{\rho C_{p} v_{0} L}{\lambda} = Re \cdot Pr$: Nombre de Peclet
- ullet $Pr =
 u/\kappa$: Nombre de Prandtl
- $Ec = \frac{v_0^2}{C_p \Delta T_0} = \frac{\text{Energie cinétique}}{\text{Enthalpie}}$: Nombre d'Eckert

2.2 Principes fondamentaux : Conditions limites

cinématique et thermique

- Fluide visqueux : $\mathbf{v} = 0$ aux parois solides
- Transferts thermiques : continuité des flux thermiques aux interfaces

$$(\lambda \nabla T - \lambda' \nabla T') \cdot \mathbf{n} = 0$$



thomas.gomez@upmc.fr

MHD - 4AE04

Introduction
Principes fondamentaux
Magnétohydrodynamique
Solutions analytiques en canal plan

Electrodynamique Electromagnétisme Dynamique des fluides

2.3 Principes fondamentaux : Equations de la MHD

Magnétohydrodynamique

- $\bullet \quad \mathsf{NS} : \boxed{ \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{v} + \mathbf{f} + N(\mathbf{j} \times \mathbf{B}) \quad , \quad \nabla \cdot \mathbf{v} = 0 }$
- Induction : $\frac{\partial}{\partial t} \mathbf{B} + (\mathbf{v} \cdot \nabla) \mathbf{B} = \frac{1}{Re_{\eta}} \nabla^2 \mathbf{B} + (\mathbf{B} \cdot \nabla) \mathbf{v} , \quad \nabla \cdot \mathbf{B} = 0$
- Loi d'Ampère : $\mathbf{j} = \frac{1}{Re_{\eta}} \nabla \times \mathbf{B}$
- Conservation des charges : $\nabla \cdot \mathbf{j} = 0$
- Loi d'Ohm généralisée : $\mathbf{j} = -\nabla \phi + \mathbf{v} \times \mathbf{B}$
- Thermique : $\frac{\partial}{\partial t} T + \mathbf{v} \cdot \nabla T = \frac{1}{Pe} \nabla^2 T + E_c N \mathbf{j}^2 + \Phi + Q$
- Echelles caractéristiques : v_0 , B_0 , ΔT_0 , $j_0 = \sigma v_0 B_0$, $p_0 = \rho v_0^2$, $\Phi_0 = L v_0 B_0$.
- $\bullet \quad \text{Nombres sans dimension}: \ \textit{Re} = \frac{\textit{Lv}_0}{\textit{\nu}}, \ \textit{N} = \frac{\sigma \textit{LB}_0^2}{\rho \textit{v}_0}, \ \textit{Ha} = \textit{LB}_0 \sqrt{\frac{\sigma}{\rho \textit{v}_0}}, \ \textit{Re}_\eta = \frac{\textit{Lv}_0}{\eta}$