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Experimental evidence of isotropic transparency and complete band gap formation
for ultrasound propagation in stealthy hyperuniform media
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Following on recent experimental characterization of the transport properties of stealthy hyperuniform media
for electromagnetic and acoustic waves, we report here measurements at ultrasonic frequencies of the multiple
scattering of waves by 2D hyperuniform distributions of steel rods immersed in water. The transparency, for
which the effective attenuation of the medium is canceled, is first evidenced by measuring the transmission of a
plane wave propagating in a highly correlated and relatively dense medium. It is shown that a band gap occurs in
the vicinity of the first Bragg frequency. The isotropy of both transparency and band gap are also evidenced for
the case of waves generated by a point source in differently ordered and circular-shaped distributions. In other
words, we thus obtain a representation of the Green’s function. Our results demonstrate the huge potential of
hyperuniform, as well as highly correlated, media for the design of functional materials.
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I. INTRODUCTION

Wave propagation in complex media is the subject of
intense research these past few years in both optical and
acoustical communities, with a particular motivation for the
control of propagation. Recent studies proposed to design the
disorder itself, by increasing position correlations between
scatterers, in order to access unusual properties at different
frequency ranges. For example, correlations change the scat-
tering mean free path [1], may support band gaps [2,3], and
could also have strong implications in the context of diffusive
transport or Anderson localization [4,5].

Recently, a new class of correlated media called “stealthy
hyperuniform” (SHU) media [6–8] have shown a tremendous
potential in the enhancement of these properties. These are
disordered media from a local point of view, but characterized
by the cancellation of density fluctuations at a long range
scale. It results in the cancellation of the structure factor in
the reciprocal space for a finite set of vectors, whereas general
hyperuniformity requires the structure factor to vanish in the
infinite-wavelength limit [9,10]. It gives them an isotropic
behavior as purely random media, but also scattering prop-
erties similar to crystalline media. Their robustness against
scatterer position defects gives them a considerable advantage
over periodic media [11], which partly explains their attrac-
tiveness for the design of complex media able to control wave
propagation. The exploration of SHU properties began in op-
tics [12–19], and especially two interesting phenomena have
been investigated: a transparency regime at low frequencies
and the appearance of band gaps at higher frequencies.

The transparency of hyperuniform media has been stud-
ied several times in the past. The first work, carried out in
optics, highlighted the transparency for distributions of point
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scatterers [17]. This phenomenon was then observed for scat-
terers of finite size, for both electromagnetic waves [20] and
acoustic waves [21–24]. Furthermore, it has also been shown
that transparency is robust to particle size polydispersity [22].

In this paper, we mainly tackle the band gap phenomena
which was thought to appear only in crystalline media. Lot
of research has been done to explain the origin of band gaps
in disordered media with structural correlations [2,11–13,25–
28], as well as the coupling with local resonances as discussed
in [3,5,21,23]. Studies in audible acoustics have inspected the
wave transmission behavior depending on the medium order
and shown that for highly correlated media, band gaps are
similar to those appearing in periodic media [29–31]. Inter-
estingly, numerical characterizations [12,14,21] and optical
measurements [15,16] have shown that these band gaps can
be completely isotropic in a wide frequency range contrary to
crystalline media. This characteristic could allow the design of
free form wave guides for example [15,21]. However, no an-
gular field measurements demonstrating the isotropy property
of transparency and bandgap formation have yet been made in
acoustics.

We report here experimental ultrasonic measurements on
nonresonant SHU media that follow on from other experi-
mental studies carried out in microwaves by the group of
Aubry [32], and more recently in acoustics in the case of
rigid scatterers disposed in an air filled guide [30]. Exact
calculations of the acoustic field scattered by a large number
of cylinders were also carried out by an in-house multiple
scattering software called MuScat [33]. We aim to evidence
experimentally the isotropy of transparency for the propaga-
tion of ultrasonic waves in relatively dense distributions of
nonresonant cylindrical scatterers immersed in water, as well
as the appearance of complete band gap. For high values of
the stealthiness degree χ , the transmission drops are stronger
but anisotropic as a consequence of a crystallization of the
medium.
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This article is organized as follows. In Sec. II, we outline
the main structural and scattering properties of 2D nonres-
onant SHU media that have been reported in the recent
literature. We also derive the expressions of the transmitted
and scattered fields which are used further for the comparison
of experimental and numerical quantities. In Sec. III, we show
measurements of the transmission through a highly organized
rectangular shaped distribution of steel rods immersed in
water. The transparency and the appearance of a band gap
are observed. These measurements are compared with a nu-
merical MuScat simulation and homogenization models. In
Sec. IV, we experimentally evidence the isotropic nature of
SHU media transport properties. Measurements of the di-
rectivity pattern of a spherical field that propagates trough
differently organized circular distributions of steel rods are
conducted. The isotropy of transparency is evidenced as well
as the isotropy of band gaps. For strongly organized SHU
media, the band gap is anisotropic as in the case of crystalline
media.

II. SCATTERING BY DENSE HYPERUNIFORM
DISTRIBUTIONS OF NONRESONANT SCATTERERS

A. Properties of hyperuniform distributions of cylinders

We consider a square medium of width L composed of N
cylinders of radius a. The fluid matrix is characterized by its
mass density ρ, sound speed c, and wave number k = ω/c
with ω the pulsation. The density of cylinders is defined as
φ = Nπa2/L2.

The scattering properties of a distribution of N point
scatterers are strongly linked to the structure factor of this
distribution which is defined in the reciprocal space as

S(q) = 1

N

N∑
i=1

∣∣eiq·ri
∣∣2

. (1)

q = kscat − kinc is a vector in the reciprocal space, with kinc

and kscat the incident and scattered wave vectors. At the ori-
gin q = 0 which corresponds to forward scattering (kscat =
kinc), any point distributions have a nonzero structure factor
S(q = 0) = N . “Stealthy” hyperuniform (SHU) distributions
have a zero structure factor for a range of wave numbers
0 < |q| � K .

SHU distributions are characterized by a parameter χ , the
stealthiness degree, which determines the spatial correlation
degree between scatterers. χ = 0 leads to a random distribu-
tion and, in two dimensions, its maximal value χmax = π/4
leads to a perfect crystal with a square lattice. In addition, the
transition of a disordered to an ordered point pattern appears
at χtrans = 1/2 [8]. This parameter is defined as the ratio
of the number of independently constrained wave vectors in
reciprocal space to the total degrees of freedoms. One can find
a detailed description of the parameter χ in Ref. [6]. In this
article, SHU media are generated by constraining the structure
factor to vanish within a disk of radius K = π

√
4χN + 1/L in

the reciprocal space, and by following the procedure described
by Zhang et al. [7,34] and Froufe-Pérez et al. [2].

For cylinders of finite size (a > 0), the cut-off frequency
limiting the cancellation of the structure factor is approached

as follows [22]:

fc = cK

4π
= c

2a

√
φχ

π
. (2)

Each medium can be characterized by a mean distance be-
tween scatterers d = [A/N]1/2, where A is the area enclosing
all the centers of the scatterers. This distance is arbitrarily
defined as a characteristic distance corresponding to a square
lattice. We also introduce the Bragg vector norm qB = 2π/d
where the maximum of the structure factor is nearly lo-
cated [30]. The Bragg wave number is then kB = qB/2, and
the Bragg frequency is

fB = c

2d
. (3)

In the following, this frequency is used as an indication of
the vicinity of which the band gap in transmission occurs. In
the case of a rectangular distribution of cylinders, the mean
distance is d = a

√
π/φ, giving fB = fc/

√
χ . The Bragg fre-

quency fB is thus greater than the cut-off frequency of SHU
media fc.

B. Scattering properties of stealthy hyperuniform media

The coherence length in a heterogeneous medium is quan-
tified by the scattering mean free path �s(ω) = 1/2αeff , where
αeff is the effective attenuation of the medium. Under the inde-
pendent scattering approximation (ISA), the mean free path is
expressed as �ISA

s (ω) = [n0σs(ω)]−1, where n0 is the number
density of scatterers and σs the scattering cross section of a
single scatterer found using Mie theory.

In the single-scattering regime, the scattered intensity is
proportional to the structure factor [17]. If the incident wave
vector is such that kinc < K/2, the scattered wave vector
kscat is entirely confined within the disk of radius K . As a
consequence, the scattering is suppressed for all scattering
angles at frequencies lower than fc given by Eq. (2). Since
the domain where the structure factor vanishes is a disk here,
the transparency should be isotropic. However, in this article,
we consider relatively dense distributions so that the previous
hypothesis might be invalid to describe the acoustic wave
transport. In the multiple scattering regime, Leseur et al. have
shown that the scattered intensity is not canceled, but only
forward scattering occurs for a medium of finite size [17]. In
any case, no losses due to scattering are expected for f � fc,
which leads to the cancellation of the effective attenuation
αeff .

C. Transmitted and scattered fields by rectangular SHU media

A multiple-scattering medium can be homogenized by a
complex effective wave number

keff = ω

veff
+ iαeff , (4)

with veff and αeff its effective phase velocity and attenuation.
Numerous models based on multiple scattering theory have
been developed to describe keff . In previous studies, we have
shown that the Fikioris and Waterman model is particularly
well suited to describe transparency effects by using the pair
correlation function [35,36]. The coherent pressure field that
propagates through the medium is referenced next as total
field ptot. It is the sum of the incident field pinc and the
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coherent scattered field by the medium pscat. Assuming that
keff is known, the incident field, the coherent total field, and
the coherent scattered field at a given position x in water are
all plane waves that can be expressed in the Fourier domain as
follows:

pth
inc(x, ω) = eik(h+x), (5)

pth
tot (x, ω) = eikeff heikx, (6)

pth
scat (x, ω) = eikx[eikeff h − eikh]. (7)

We consider the surrounding medium as a perfect fluid, i.e.,
without attenuation. In the case of a SHU medium, one can
make the hypothesis that αeff � 0 mm−1 for all the frequen-
cies f < fc. In the transparency regime, the coherent total
pressure field is then approximated by

pth
tot (x, ω) = pth

inc(x, ω)eiωh( 1
veff

− 1
c )

, ω < ωc. (8)

The total field is phase shifted from the incident field prop-
agating only in water, but its modulus remains equal to one.
The modulus of the scattered field in the transparency regime
is then expressed in the following simplified form:

∣∣pth
scat (ω)

∣∣ = 2

∣∣∣∣sin

(
ωh

2

[
1

veff
− 1

c

])∣∣∣∣, ω < ωc. (9)

If scattering is suppressed, veff = c, the medium is therefore
nondispersive. However, it should be noted that even in the
case where quite significant forward scattering occurs; in
dense media for example, we will show that the transmission
still remains equal to one as discussed before.

III. EXPERIMENTAL CHARACTERIZATION
OF THE TRANSMISSION

In this section, we analyze scattering effects exclusively
due to the spatial arrangement of cylinders, i.e., strong
spatial correlations effects, in a wide frequency range from
transparency at low frequency up to the first band gap.
The transport properties of this medium are characterized
from the transmission of a plane wave through a rectangular
shaped distribution of cylinders at normal incidence.

A. Medium fabrication, ultrasonic setup,
and measured quantities

All the media made for the experiments presented in
this article are collections of steel rods of same radius
a = 0.35 mm and 200 mm long. The elastic rods are char-
acterized by their density ρp = 8.0 µg/mm3, longitudinal
wave speed cL

p = 5.76 mm/µs, and transverse speed cT
p =

3.06 mm/µs. They are immersed in water of density ρ =
1.0 µg/mm3 and sound speed c = 1.49 mm/µs. It is a sys-
tem similar to that used in the characterization of acoustic
attenuation in correlated media described in [37], for exam-
ple. These rods are nonresonant at the frequencies of interest
(0.1–0.8 MHz), hence they are naturally considered as rigid.
Holes of diameter 0.8 mm are perforated through thin PMMA
plates by following a desired distribution pattern using a laser
cutting machine. The rods are then inserted between iden-
tically perforated plates that are fixed on a support, which

FIG. 1. (a) Picture of a part of the SHU distribution used to
position steel rods. The area fraction of rods is φ = 20% and the
stealthiness degree is χ = 0.6. Burst pulses are emitted in water by
an ultrasonic (US) captor and transmitted signals are received by a
hydrophone. The distribution is translated along the y axis in order
to acquire signals at different positions. (b) Structure factor of the
distribution in the reciprocal space. (c) Structure factor along the
qx axis at qy = 0 mm−1. The blue dashed lines indicate the vector
norm K and the red dotted lines indicate the Bragg vector norm qB.

ensures that all the rods are parallel to each other. The support
is then immersed in a water tank.

The transmission experiment is sketched in Fig. 1(a). Short
ultrasonic pulses are emitted by a piezoelectric transducer
(Olympus, diameter of 25,4 mm) of 500 kHz center frequency
and with a bandwidth 0.1–0.9 MHz. The sample is set in the
far field of the emitter transducer to generate a plane wave
front along the acoustic axis. Moreover, lateral dimension of
samples is sufficiently large to avoid diffraction by edges due
to the beam aperture [38]. The ultrasonic signals are recorded
by a hydrophone (Teledyne TC4038, global diameter of 4 mm
and with a sensitive area of approximately 3 mm2) having a
flat receiving response in the frequency range 10–800 kHz.
The axis of the hydrophone coincides with the axis of the
transducer. The hydrophone is coupled to a preamplifier
(RESON EC6081) to increase the amplitude of the measured
signals compared to noise. The support is then translated with
a motorized translation stage to acquire signals at different
lateral positions along the y direction with a spatial step of
1 mm.

The acquired signals are multiplied by a Tukey window
in order to ignore signals reflected between the distribution
of steel rods and the surface of the captors or by the edges
of the tank. The total field can be assessed experimentally
from the ratio between the Fourier transform of the average
signal propagating through the medium and the spectrum of a
reference signal that propagates only in water. The total and
scattered pressure fields are experimentally evaluated by

ptot = S̃avg

|S̃ref |
, (10)

pscat = S̃avg − S̃ref

|S̃ref |
, (11)
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where S̃avg is the Fourier transform of the spatial average of
signals which propagate through the distribution, and S̃ref is
one of the reference signals. Note that the transmission coeffi-
cient of the medium is therefore obtained from the modulus
of the total field. The effective velocity and attenuation of
the medium are determined by the phase difference and the
amplitude ratio of the measured acoustic signals as follows:

veff = ωh

kh + arg(S̃avg) − arg(S̃ref )
, (12)

αeff = −1

h
ln

( |S̃avg|
|S̃ref |

)
. (13)

The distance h = L + 2a is the propagation distance inside the
medium.

B. Transmission through a highly correlated SHU distribution

Numerical and experimental acoustic studies of the in-
fluence of χ on the transmission through 2D SHU media
have been recently reported in [22,30,31]. In particular, it was
shown that the transmission remains equal to one for f � fc.
After fc, the amplitude of the coherent total field decreases
more and more rapidly, and significantly, as the parameter χ

increases. It is attributed to a band gap similar to that found
in crystalline media [30]. We analyze here the transmission
through a relatively dense medium of area fraction φ = 20%,
with a high value of stealthiness degree χ = 0.6. In addition,
we are also interested in the dispersion of waves propagating
in such a SHU medium in the transparency regime. We thus
analyze the evolution of the scattered field and the effective
parameters of the medium.

We generate first a square SHU distribution of width
H = 150 mm, composed of Nt = 11 691 scatterers. The
hyperuniform point pattern is generated from the C + +
code supplied in Supplemental Material of Ref. [2]. This
code is based on ensemble theories to predict the prop-
erties of the stealthy ground state configurations [8]. The
square medium generated is then truncated to create a
medium of width L = 10 mm, length H , and composed
of N = 631 scatterers. The cut-off frequency of the dis-
tribution is fc = 0.41 MHz. The characteristic distance
is d = [HL/N]1/2 = 1.38 mm, and the corresponding first
Bragg frequency is fB = c/2d = 0.54 MHz. The structure
factor of this distribution is shown in Fig. 1(b) and its evo-
lution along the qx axis at qy = 0 mm−1 is plotted in Fig. 1(c).
It vanishes within a disk of radius K = π

√
4χNt + 1/H, and

it is maximal on a ring located in the vicinity of the Bragg
vector of norm qB = 2π/d .

In the following, the experimental quantities are compared
to those obtained with a MuScat simulation performed on the
same distribution, and also to a Fikioris and Waterman (FW)
based model for the determination of keff [39,40]. This model
applies on the coherent wave propagating through a correlated
medium by integrating the pair correlation function g2(r) of
the distribution. The calculation of g2(r) is performed here
on the generated square distribution of width H . This model
is also applied in the case of a purely random medium, con-
sidering the Hole Correction [g2(r) = 0 for r < 2a, g2(r) = 1
otherwise]. In this case, a minimal correlation is, however, still

introduced because the density is quite high and the centers
are separated by a minimal distance 2a at least.

Figures 2(a) and 2(c) show that the amplitude of the mea-
sured total and scattered fields is constant along the lateral
y direction, almost up to the cut-off frequency fc. It corre-
sponds exactly to the frequency band for which the structure
factor vanishes for |q| � K , identified by the black dotted
line at f = fc. Figures 2(b) and 2(d) respectively present
the spatial averages of the total pressure given by Eq. (10)
and scattered pressure given by Eq. (11). First, the MuScat
simulation results are in remarkable quantitative agreement
with the measurements. The measured amplitude of the total
field for f close to fc is one as expected. A phase transition
happens at f = fc, as for the structure factor. We observe
then a drastic drop in the amplitude of the total field starting
from f = fc with a minimal amplitude located near the Bragg
frequency fB. Then, it increases for higher frequencies which
is the signature of a band gap. It is worth noting that the
location and width of the band gap are approximately the
same at each lateral position y. It would imply that highly
correlated SHU media could have translation invariant prop-
erties. Moreover, the scattered field amplitude increases in the
transparency band, which is well predicted by Eq. (9) where
the effective phase velocity veff is given by the FW model that
takes into account the pair correlation function. It leads then
to dispersion effects which are analyzed next.

C. Effective parameters of the stealthy hyperuniform
distribution

The effective phase velocity veff and attenuation αeff of the
SHU medium are plotted in Figs. 3(a) and 3(b). The effec-
tive attenuation is quasinull in the transparency regime and
reaches a peak in the band gap. The effective phase velocity
slightly decreases in the transparency regime. By contrast, for
f > fc, the medium presents a much stronger dispersion with
a maximal slope at the frequency corresponding to maximal
attenuation. For both parameters, if only the hole correction
is applied, the FW model is very far from MuScat simulation
and measurements. On the other hand, if the pair correlation
function g2 of the distribution is integrated, the FW model
captures the evolution of these parameters quite well up to the
maximal slope in the velocity and the maximum of attenua-
tion. It highlights strong scattering effects due to short-range
correlations. However after this frequency, this model is far
from the MuScat simulation and the measurement. This can
be explained by the fact that the FW model was initially
developed for fully random media. For SHU media, the FW
model must be modified to include long-range correlations.
This is done here by introducing an integral depending on the
pair correlation function. But this is not strictly speaking a
completely rigorous approach for SHU media. We may even
be surprised that the results are so good. Finally, the most
important point is that it shows the effect of correlations.

Fig. 3(c) shows that for f � fc, the mean free path �s is
much larger than the distribution width L, and also signifi-
cantly larger than the one predicted by the ISA model which
does not take correlations into account. This is hence a clearer
evidence of transparency. We found here that transparency oc-
curs even at a relatively high area fraction (20 %), as predicted
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FIG. 2. Left: experimental maps of the modulus of (a) total and (c) scattered pressure fields as a function of the frequency and for several
lateral positions along a SHU distribution of steel rods of stealthiness degree χ = 0.6, with a spatial step of 1 mm. Right: mean values of the
experimental and numerical (MuScat) modulus of (b) the total field and (d) the scattered field compared also to Eq. (9) using the FW model
for the determination of the effective phase velocity veff . The vertical black dashed lines indicate the cut-off frequency of the SHU medium
fc = 0.41 MHz and the vertical red lines indicate the Bragg frequency fB = 0.54 MHz. Experimental frequency resolution is 3 kHz.

by Leseur et al. [17], and observed in microwave experiments
by Aubry et al. [32]. The oscillations at low frequencies for
f < fc can be assumed to be Fabry-Perot interferences due
to the finite size of the distribution. The frequency differ-
ence between two peaks is 
 f = veff/2h = 0.067 MHz. In
the other hand, the model considers an infinite homogenized
medium. These effects will be investigated in another work.
For the frequencies in the vicinity of fB, �s < �ISA

s and both
are shorter than L due to strong multiple scattering effects.
It generates a lot of destructive interferences at the origin of
the observed band gap in transmission. The band gap effect
(periodicity characteristic) is seen here as a significant drop in
the scattering mean free path �s (vision of random medium).
�s presents a minimum while �ISA

s decreases monotonically in
the entire inspected frequency range.

IV. ISOTROPY BEHAVIOR OF SHU MEDIA

In this section, we aim to show experimentally the isotropic
nature of SHU media in the whole frequency range depending
on their degree of order. For that purpose, we analyze the
angular dependency of the propagation of ultrasonic waves
generated by a point source inserted in differently ordered
circular hyperuniform distributions of steel rods. From an-
other perspective, the experiments presented next allow us

to characterize the Green’s function of each distribution by
measuring the directivity pattern of the radiated field outside.

A. Distribution characteristics and experimental procedure

We consider circular-shaped distributions of diameter
Rdistrib = 18 mm and area fraction φ = 15% that are displayed
in Figs. 5(a)–5(d). A random distribution and three distri-
butions of stealthiness degrees χ = 0.42, 0.5, and 0.7 are
generated and used for sample fabrication. In order to create
an omnidirectional source as incident wavefield, we use a
hydrophone (Teledyne TC4038, sensitive area of 3 mm2) in
emission placed at the center of the distribution. This kind
of piezoelectric sensor radiates a spherical field with a linear
increasing response as the frequency increases. The center
of the distribution is left empty of rods to insert the source.
The inner hole has a diameter Rin = 5 mm. The characteristic
distance of each distribution is d = [π (R2

distrib − R2
in )/N]1/2 =

1.60 mm and the corresponding Bragg frequency is
fB = c/2d = 0.46 MHz.

The emitting hydrophone is inserted in a rigid pipe with
the emitting part being outside and vertically positioned so as
to generate waves from the midheight of the rods as sketched
in Fig. 4. The rods are inserted between circular perforated
PMMA plates. Two are fixed on a support to maintain the
lower part of the rods. A third perforated plate is attached to an
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FIG. 3. (a) Effective phase velocity and (b) effective attenuation
of the SHU medium with χ = 0.6. The vertical black dashed lines
indicate the cut-off frequency fc and the vertical red lines indicate the
Bragg frequency fB. (c) Ratio between scattering mean free path �s

and medium width L. The scattering mean free path determined ex-
perimentally and from MuScat is �s = 1/2αeff . The scattering mean
free path given by ISA is �ISA

s = 1/n0σs.

other plate placed on the top of the rods to ensure the rod par-
allelism. This configuration allows free access all around the
distribution and avoids scattering by a potential support bar.
A path without rods is created to put in place the distribution
with more precision around the emitting hydrophone, and so
as to remove the distribution without moving the hydrophone.
The reference measurement is then performed for the exact
same source position. We measure the acoustic pressure field
outside the distribution at a distance Rm = 28 mm from the
center of the distribution with a second identical hydrophone

FIG. 4. Experimental ultrasonic set up for directivity measure-
ments. A circular medium composed of steel rods inserted between
several perforated PMMA plates is deposited in a water tank. A first
hydrophone is inserted at the center of the medium and generated
an omnidirectional field which propagates through the medium. A
second hydrophone is attached to a motorized translation stage and
acquires signals at different angular positions.

attached to an angular motorization stage. The emitting hy-
drophone points toward the axis of rotation of the motor.
The total field is measured over a portion of circle avoiding
positions near the rodless path. This portion corresponds to an
angular range of 215◦, with an angular step of 5◦.

B. Influence of the stealthiness degree
on the transport properties

We present here results on the propagation of spherical
ultrasonic waves in SHU distributions of different stealthiness
degrees χ . The structure factors of the four distributions are
shown in Figs. 5(e)–5(h). For the random distribution, the
nonoverlapping of rods naturally results into a minimal dis-
tance 2a between two rod centers. At high density, short-range
correlations naturally appear, that is why the structure factor
decreases for small vectors q. There is, however, no clear
pattern observed in it. On the other hand, SHU media present
a structure factor that vanishes on a disk (except at |q| =
0 mm−1). For χ = 0.42 and χ = 0.5, the structure factor has
an isotropic shape and presents rings of amplitude maxima,
corresponding to frequencies at which the medium strongly
scatters. For the medium with χ = 0.7, a quasicrystalline
hexagonal lattice state appears.

The transmission properties of multiple scattering media
are often related to the shape of their structure factor [17].
The moduli of the transmitted fields at r = Rm are shown
in Figs. 5(i)–5(l), and the directivity patterns are plotted for
several frequencies in Figs. 5(m)–5(p). In the case of the
random distribution (χ = 0), the amplitude of the field varies
significantly around the medium in the entire frequency range.
In the case of all SHU media, we systematically observe a
frequency band for which the transmission is quasione for
f � fc. This is the same behavior as for the transmission
through the rectangular distribution presented in Sec. III, with
here an omnidirectional incidence. Our results confirm that
transparency is isotropic.
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FIG. 5. (a)–(d) Distribution patterns with different stealthiness degrees: χ = 0, χ = 0.42, χ = 0.5, and χ = 0.7. The red dots are removed
to better position the emitting hydrophone at the center of each distribution. (e)–(h) Structure factors of each distribution. The image color is
truncated for the sake of visibility. The four circles of different color correspond to different frequencies used for the directivity plots of the total
field modulus in (m)–(p): blue f = 0.2 MHz, green f = 0.25 MHz, orange f = 0.46 MHz (Bragg frequency), and red f = 0.52 MHz. (i)–(l)
Maps showing the modulus of the total field at r = Rm = 28 mm for the different measurement angles and frequencies. The measurements
were performed on an angular range of 215◦ with a step of 5◦, and the frequency resolution is 3 kHz.

As χ increases, the rings of amplitude maxima in the
structure factor have a higher amplitude. As a result, a
drop in amplitude is observed for f > fc due to important
scattering. The transmission minima here are located at higher
frequencies than fB, which suggests that important destructive
interference occurs for distances smaller than the characteris-
tic distance of the square lattice d . Importantly, we observe
that for χ = 0.42 and χ = 0.5, the amplitude evenly falls in
each direction. It evidences the isotropic nature of the created
band gaps. For χ = 0.7, the distribution is quasiperiodic and
its structure factor is therefore anisotropic. The scattering
occurs then in preferential directions, so the created band gap
is anisotropic too. For example, we observe at f = 0.46 MHz
three of the four expected lobs of maximal amplitude. These

are located exactly at the angles where the structure factor is
null. On the other hand, the transmission is zero where the
structure factor is maximal.

We analyze now statistical quantities to characterize the
transport properties of the different media. The modulus of the
average total field over the angles pavg

tot is plotted in Fig. 6(a)
for the different values of χ as a function of the frequency.
For χ = 0.7, the plot is made for f < fc since the direc-
tivity is anisotropic for f > fc. In this last case, an average
after fc would therefore be irrelevant for our purpose. The
modulus of the average total field fluctuates in the random
case, while it is quasione until the cut-off frequency fc in the
case of SHU distributions. Then, for f > fc, the amplitude
decreases less rapidly but more significantly in the band gap
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FIG. 6. (a) Absolute value of the average total field pavg
tot at

r = Rm for the four distributions studied. The dashed vertical lines
show the different cut-off frequencies of each distribution (the line
colors refers to the corresponding curves). The curve for χ = 0.7
is displayed for f < fc because the total field has an anisotropic
shape for higher frequencies. The gray area covers the frequency
band 0.40–0.58 MHz. (b) Variance of the total field modulus about
the different angles. Arrows on the top of each figure indicate the
frequencies used for the plots in Figs. 5(m)–5(p).

as χ increases. In order to characterize the frequency width
of isotropy, the variance of the total field modulus about
the measured angles is shown in Fig. 6(b). For all SHU
distributions, it is quasinull before the respective cut-off

frequencies fc. At higher frequencies, in the frequency band
(arbitrarily chosen) indicated by a gray background, the vari-
ance is low and quasiconstant for all χ < 0.7. For χ = 0.7,
it presents important variations and a peak showing a strong
anisotropic behavior of the medium. Moreover, and on the
contrary, a minimum at f = 0.52 MHz shows that an isotropic
behavior also occurs at this high value of χ , but in a very
limited band. These results suggest then that the Green’s func-
tion is isotropic in the entire frequency range when χ is of
moderate value, i.e., before the crystallization of the medium.

V. CONCLUSIONS

We have analyzed the transport properties of ultrasounds
propagating in stealthy hyperuniform distributions of non
resonant rods immersed in water.

We conducted a first experiment to demonstrate trans-
parency and band gap formation in a highly correlated SHU
medium. In addition, MuScat simulation results are in remark-
able quantitative agreement with the measurements. Before
the cut-off frequency of the SHU medium, fc, only forward
scattering occurs which leads to the cancellation of the ef-
fective attenuation. Nevertheless, wave scattering causes wave
dispersion inside the medium. A main result was to show that
transparency remains for a relatively high density medium,
which confirms the suggestion of Leseur et al. [17]. A band
gap due to destructive interference originated from high posi-
tion correlations between scatterers has been evidenced. More
importantly, we also found that transparency and band gap are
invariant to translation along the medium.

By conducting measurements of the directivity of different
SHU distributions, we were able to extend the comprehension
of SHU properties by characterizing the Green’s function. If
SHU media have a stealthiness degree such that no principal
directions are found in the reciprocal space, the transparency
is isotropic as well as the complete and wide band gaps that
appear in transmission.

The results obtained should contribute to a better under-
standing of the scattering properties of SHU media. They also
should have important applications in the context of design-
ing heterogeneous media to control of wave propagation, or
frequency filters.
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