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A B S T R A C T

We present a thorough procedure for measuring the rheological properties of soft, highly attenuating, visco-elastic materials at ultrasonic frequencies. The
material chosen for this illustration is a crosslinked Polyurethane (PU) elastomer (Sika UR3440 type), which is widely used in the field of underwater acoustics.
We determine its complex longitudinal modulus 𝑀 and shear modulus 𝐺 as function of frequency in the range 1–5 MHz and of temperature in the range
5–40 ◦C. 𝑀 is determined from the measurement of the transmission of longitudinal, plane waves by a slab of PU immersed in water. 𝐺 is determined by contact
measurements from the transmission and reflection of transverse, plane waves by a slab of PU. This determination of 𝐺 for such a soft and viscous material as PU
is made possible by the use of thin slabs and the implementation of an original signal analysis. 𝑀 , 𝐺 and bulk modulus 𝐾 are found to obey the time–temperature
superposition principle and to be accurately described by a fractional derivative rheological model. This allows us to propose analytic formulas for the frequency
and temperature dependence of 𝑀 , 𝐺 and 𝐾 valid above PU glass transition temperature.
1. Introduction

The main purpose of this work is to establish a procedure for
thoroughly determining the rheological properties, namely the complex
longitudinal modulus 𝑀 and shear modulus 𝐺 of soft, visco-elastic
materials as function of temperature and frequency in the ultrasonic
frequency range.

The material chosen for illustrating this procedure is a crosslinked
Polyurethane (PU) elastomer (UR3440 from Sika), which is widely used
in the field of underwater acoustics as anechoic coating [1,2] due
to its impedance matching with water [3–5] and good resistance to
high pressure, low temperatures and aging. Characterizing this spe-
cific elastomer is indeed the secondary purpose of this work. The
determination of the visco-elastic properties of PU is indeed crucial
for designing elastic metamaterials for underwater applications [6],
since both longitudinal and transverse waves are involved in the wave
scattering and attenuation processes at play in metamaterials.

The rheological properties of polymeric materials can be determined
in a wide frequency range by combining several measurement tech-
niques working in distinct frequency ranges [7,8] or by using a single
technique and exploiting the time–temperature superposition (TTS)
principle [9]. We briefly go through them and point their limitations
for highly attenuating materials such as PUs. (i) Dynamic mechanical
analysis (DMA) performed in the low frequency range (𝑓 < 10 kHz)
and at controlled temperature can give access to 𝐺 and Young modulus
𝐸 = 𝐺(3𝑀 − 4𝐺)∕(𝑀 − 𝐺) of PUs in wide frequency ranges using
the TTS principle [10–13]. (ii) The measurement of the transmission
of longitudinal, plane waves by an immersed slab of visco-elastic
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material, called hereafter the immersion technique, gives access to 𝑀
in the ultrasonic frequency range [14,15], even for highly attenuating
materials. The measurement of the reflection of longitudinal, plane
waves by a slab of liquids through direct contact can give also access
to 𝑀 in the ultrasonic frequency range [16–18]. Discrepancies are
found between measurements obtained by DMA and the immersion
technique, especially concerning the dissipative part of the visco-elastic
moduli [19–21]. (iii) The ultrasonic technique based on longitudinal–
transverse wave conversions at the material–liquid interfaces of an
immersed sample irradiated by a plane, longitudinal wave beyond the
critical angle [22], which has been applied to viscoelastic materials,
cannot be applied to highly attenuating media such as PUs [23]. (iv)
The technique based on the measurement of the reflection of a trans-
verse ultrasonic wave by an interface between a solid and a visco-elastic
liquid at normal [24–26], oblique [27,28] or grazing incidence [29,
30], called hereafter the reflection technique, can also be applied to
solid, visco-elastic materials [31]. Discrepancies are also found between
measurements obtained by DMA and the reflection technique [31]. (v)
Finally, the technique based on the modification of the impedance of a
piezo-electric transducer by an adherent layer of visco-elastic, weakly
dissipative solid can also give simultaneously access to 𝑀 and 𝐺 [32].
To conclude this review, up to now the only technique giving access
to the shear modulus 𝐺 of highly attenuating materials at ultrasonic
frequencies was the reflection technique, which often lacks precision
especially regarding the dissipative part of 𝐺. In this article we combine
the immersion technique for accessing the longitudinal modulus 𝑀 of
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soft, highly attenuating, visco-elastic materials at ultrasonic frequencies
and a reflection–transmission technique, called hereafter the sandwich
technique, for accessing their shear modulus 𝐺 in the same frequency
range. The latter technique was recently developed by our team for
accessing the shear modulus 𝐺 of viscous liquids at ultrasonic frequen-
cies [33]. It was adapted to soft, highly attenuating materials for the
purpose of this work. More precisely, the determination of 𝐺 for such
a soft and viscous material as PU was made possible by the use of thin
slabs and the implementation of an original signal analysis which is
detailed hereafter.

The article is structured as follows. In Section 2, we present the
main features of the immersion technique and the measurements of
longitudinal velocity and attenuation of PU. In Section 3, we present
the main features of the sandwich technique, how it was adapted to soft
materials and the measurements of transverse velocity and attenuation
of PU. In Appendix A, we quantify its repeatability. In Appendix B,
we study the influence of the hardening temperature on the PU visco-
elastic properties. Interestingly, the sandwich technique can also be
used to monitor the PU polymerization process, as detailed in Ap-
pendix C. In Section 4, we present the TTS principle and demonstrate
that the complex longitudinal and shear moduli 𝑀 and 𝐺 as well as the
complex longitudinal modulus 𝐾 = 𝑀 −4∕3𝐺 satisfy the TTS principle
by determining the corresponding scaling factors. In Section 5, we
demonstrate that 𝑀 , 𝐺 and 𝐾 are accurately described by a fractional
derivative model and we provide analytic formulas for the frequency
and temperature dependence of 𝑀 , 𝐺 and 𝐾 valid above PU glass
transition temperature 𝑇𝑔 < −60 ◦C.

2. Measurement of longitudinal velocity and attenuation

2.1. Experimental setup and protocol

PU samples used in this study are obtained by solidifying a mixture
of liquid polymer and liquid hardener provided separately. Immediately
after blending, the mixture is degassed at ambient temperature in order
to release air bubbles. Then it is poured into a cylindrical mold. PU
crosslinking leading to its hardening is achieved in 4 h in an incubator
at 80 ◦C. The sample thickness is ℎ𝑎 = (10.37±0.03) mm and its diameter
is 𝐷 = (129.10 ± 0.13) mm at ambient temperature 𝑇𝑎 = (16.4 ± 0.1) ◦C.
Mass density of crosslinked PU at 𝑇𝑎 is 𝜌𝑎 = (1017 ± 5) kg m−3.

The sample is fixed in a tapped panel and is immersed in a 900 mm×
400 mm× 360 mm tank of water. Two identical NDT Systems IBHG024-
type longitudinal wave transducers (2𝑎 = 0.5 inch active diameter,
2.25 MHz nominal central frequency) are precisely aligned along the
sample axis and oriented parallel to the sample faces using goniometers
and translation stages (see inset of Fig. 2), so that the sample is
irradiated at normal incidence.

Except during the short intervals of acoustic measurements, water
is constantly agitated in order to avoid density stratification above
the heat exchanger of the thermal regulation circuit located at the
bottom of the caulked tank. Measurements are performed at controlled
temperature ranging between 5 ◦C and 45 ◦C, as measured using
a Platinum resistance thermometer. Temperature variations during a
measurement are in the range of 20 mK, while temperature gradients
at the tank scale are insignificant.

The emitting transducer is fed with pulses by a Olympus PR5072-
type pulser-receiver at a 100 Hz repetition rate. The signals detected
by the receiving transducer are acquired and digitized with a 14-bit
resolution at 𝑓𝑠 = 400 MHz sampling frequency and averaged over 1000
acquisitions.

The longitudinal wave phase velocity 𝑐𝐿 and attenuation 𝛼𝐿 in
PU are determined by comparing the wave transmitted through the
sample with the wave transmitted through water only in absence of
sample. The accuracy of the technique relies on the precise knowledge
of the wave velocity in water 𝑐𝑤. Thus, 𝑐𝑤 is accurately determined
before each transmission measurement by translating the emitter along
2

Fig. 1. Temperature dependence of acoustic velocity 𝑐𝑤 in tank water. Symbols with
error bars: measurements. Solid curve: Medwin’s model [34].

the wave propagation axis using a motorized translation stage and by
measuring the slope of the linear variation of the pulse travel time
through water versus the emitter–receiver distance. The temperature
dependence of 𝑐𝑤, shown in Fig. 1, agrees with Medwin’s model of
acoustic velocity in water that takes into account water temperature,
salinity 𝑆 (best fit value 𝑆 = 1.4 ppm) and immersion depth [34].

2.2. Signal analysis and results

The transmission coefficient of the PU slab is defined as the ratio be-
tween the Fourier transform �̂�(𝑓 ) of the time signal transmitted through
the PU sample 𝑆(𝑡) and the Fourier transform �̂�𝑤(𝑓 ) of the time signal
transmitted through water only in absence of sample 𝑆𝑤(𝑡) (see inset
of Fig. 2). Since PU impedance matches that of water within 5%, we
can safely neglect the reflections at PU–water interfaces and the round
trips of the wave inside the slab. Thus, �̂�∕�̂�𝑤 =  exp[−𝑖

(

𝑘𝐿 − 𝑘𝑤
)

ℎ],
where 𝑘𝑤 = 𝜔∕𝑐𝑤 is the real wavenumber in water assuming negligible
attenuation in water (𝜔 = 2𝜋𝑓 ), 𝑘𝐿(𝜔) = 𝜔∕𝑐𝐿(𝜔)− 𝑖𝛼𝐿(𝜔) the unknown
complex acoustic wavenumber in PU, and

 =
4𝜌𝑤𝑘𝑤𝜌𝑘𝐿

(

𝜌𝑤𝑘𝐿 + 𝜌𝑘𝑤
)2

(1)

the product of pressure transmission coefficients at water–PU and
PU–water interfaces with 𝜌𝑤 the mass density of water [35]. Thus,

⎧

⎪

⎨

⎪

⎩

𝑐𝐿 = 𝑐𝑤 + 𝜔ℎ
arg

(

�̂�∕�̂�𝑤
)

− arg ( )
,

𝛼𝐿 = 1
ℎ
log

(

| |

|

|

|

�̂�∕�̂�𝑤
|

|

|

)

.
(2)

where log is the natural logarithm and ℎ the sample thickness [14].
The temperature dependence of 𝜌𝑤 is evaluated from [36]. A linear
approximation can be used for evaluating the variation of 𝜌 and of ℎ
with temperature:

ℎ(𝑇 ) = ℎ𝑎
[

1 + 𝜅
(

𝑇 − 𝑇𝑎
)]

(3)

𝜌(𝑇 ) = 𝜌𝑎
[

1 − 3𝜅
(

𝑇 − 𝑇𝑎
)]

(4)

where 𝜅 = 2.60×10−4 K−1 the PU linear expansion coefficient at ambient
temperature [37].

Note that the problem is implicit since  depends on 𝑘𝐿 which
is unknown. Thus, 𝑐𝐿 and 𝛼𝐿 are determined by iteration at each
investigated frequency.

The frequency range of validity of experimental determination of
𝑘𝐿 is determined by requiring a minimum single-to-noise ratio for TTS

analysis. This leads to apply a spectral cutoff at −20 dB of the signal
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Fig. 2. (a) Phase velocity 𝑐𝐿 and (b) attenuation 𝛼𝐿 of longitudinal waves in
polyurethane as function of frequency 𝑓 for several temperatures. Vertical dashed lines
correspond to 𝑓min and 𝑓max, see text. Solid (resp. dashed) lines: sample with thickness
ℎ𝑎 = (10.50 ± 0.03) mm (resp. ℎ𝑎 = (9.84 ± 0.03) mm). Inset: sketch of the experimental
etup.

nergy maximum. This leads to 𝑓min = 0.8 MHz and 𝑓max = 3.8 MHz.
e checked that this frequency range satisfies two criteria:

• In order to avoid any propagation through the tapped panel, the
beam (main diffraction lobe) diameter has to be smaller than the
sample internal diameter 𝐷. The corresponding lower boundary
for frequency is 𝑓1 such that [34,38]

arcsin
(

3.83∕(𝑘𝑤𝑎)
)

= arctan
[

(𝐷∕2 − 𝑎) ∕
(

𝐿 − 𝑧𝑅
)]

. (5)

Here, 𝑓1 = 0.44 MHz at 𝑇 = 5 ◦C and 𝑓1 = 0.47 MHz at 𝑇 = 40 ◦C.
• In order for the wave propagating through the sample to be

considered as a plane wave, the sample has to be located in the
far-field distance of emitter, namely 𝑧𝑅. The corresponding upper
boundary for frequency is 𝑓2 such that 𝑧𝑅 ≃ 𝑘𝑤𝑎2∕2𝜋 = 𝐿 [39].
For the transducers used in this study, 𝑓2 = 4.6 MHz at 𝑇 = 5 ◦C
and 𝑓2 = 5.0 MHz at 𝑇 = 40 ◦C.

hese two criteria are actually fulfilled since 𝑓min > 𝑓1 and 𝑓max < 𝑓2.
The variations of 𝑐𝐿 and 𝛼𝐿 versus 𝑓 are displayed in Fig. 2 for

several temperatures and for two samples with different thicknesses.
𝑐𝐿 exhibits a weak dispersion and decreases with 𝑇 . 𝛼𝐿 increases with
frequency 𝑓 and decreases with temperature 𝑇 .
3

3. Measurement of transverse velocity and attenuation

3.1. Experimental setup and protocol

The setup and experimental procedure used in this work for measur-
ing the transverse velocity and attenuation are almost identical to the
ones presented in [33]. We remind them for self-consistency purpose.

The setup is composed of two delay lines sandwiching a slab of
PU, as sketched in Fig. 3(a). Basically, the transverse velocity and
attenuation in PU are deduced from the transmission and reflection of
shear waves by the slab.

Two identical delay lines made of 2017A Duralumin are used. Two
Olympus V154 shear wave transducers with 𝑓𝑐 = 2.25 MHz nominal
central frequency, 0.5 inch active diameter and −6 dB frequency band-
width, are tighten against each delay line using screws, see Fig. 3(a).
Contact is ensured by using as couplant phenyl salicylate (Salol) instead
of commercial shear wave couplant as in [33,40]. To do this, contact
surfaces are wetted with liquid Salol heated above 60 ◦C, then pressed
against each other. Ultimately, Salol solidifies by cooling though heat
conduction. Noticeably, intimate contact between solid PU and delay
lines is achieved by taking advantage of the liquid behavior of PU
before hardening. Non-crosslinked PU mixture is poured on the top sur-
face of the bottom delay line, then the liquid layer is squished between
the delay lines separated by calibrated spacers. As a consequence, the
sample thickness is equal to the spacer thickness ℎ. Finally, the setup is
put in a refrigerated incubator with controlled temperature 𝑇𝑐 = 5 ◦C
and PU crosslinking occurs, resulting in the adhesion of PU to the
delay lines. The progress of the cross-linking process is monitored by
acquiring on a regular basis the time-dependent transmitted signal.
Its peak-to-peak amplitude 𝐴 increases in time with the progress of
the cross-linking process. When 𝐴 saturates, the PU hardening process
is assumed as achieved, the last acquired signals are considered as
the steady-state signals, then the setup temperature can be possibly
modified. The thermalization of the setup after a temperature change
is achieved after 4 h.

On the one hand, the delay lines sandwiching the PU slab as
sketched in Fig. 3(a), we measure (i) the signal 𝑆𝑅𝐴

(𝑡) (resp. 𝑆𝑅𝐵
(𝑡))

emitted by transducer 𝐴 (resp. 𝐵), reflected by PU slab and received by
𝐴 (resp. 𝐵) and (ii) the signal 𝑆𝑇𝐴 (𝑡) (resp. 𝑆𝑇𝐵 (𝑡)) emitted by transducer

(resp. 𝐵), transmitted by PU slab and received by 𝐵 (resp. 𝐴). On the
ther hand, the setup being unmounted and the sample being removed
s sketched in Fig. 3(b), we measure the calibration signal 𝑆𝐶𝐴

(𝑡) (resp.
𝑆𝐶𝐵

(𝑡)) emitted by transducer 𝐴 (resp. 𝐵), reflected by delay line free
urface and received by 𝐴 (resp. 𝐵). Typical reflected, transmitted
ns calibration signals are shown in Fig. 4. Despite the use of rather
hin samples (90 μm), the transmitted signal amplitude is strikingly
mall compared to that of the reflected signal (40 times smaller), as
consequence of the large impedance mismatch between Dural delay

ines and PU but also of the large attenuation of shear waves in PU.
The slab transmission coefficient  exp and reflection coefficient

exp satisfy:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

( exp)2(𝜔) =
�̂�𝑇𝐴 (𝜔)

�̂�𝐶𝐴
(𝜔)

�̂�𝑇𝐵 (𝜔)

�̂�𝐶𝐵
(𝜔)

,

exp(𝜔) = 1
2

(

�̂�𝑅𝐴
(𝜔)

�̂�𝐶𝐴
(𝜔)

+
�̂�𝑅𝐵

(𝜔)

�̂�𝐶𝐵
(𝜔)

) (6)

where �̂�(𝜔) is the Fourier transform of 𝑆(𝑡) [33].
To conclude, the principle of measurement of the transverse velocity

𝑐𝑇 and attenuation 𝛼𝑇 is similar to that of 𝑐𝐿 and 𝛼𝐿 except that (i)
water is replaced by solid delay lines and (ii) transmission through
water only, which corresponds to the reference signal, is replaced by
total reflection by the ends of unmounted delay lines.
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Fig. 3. Sketch of the experimental setup. 𝐴, 𝐵: shear wave transducers. (a) Reflected and transmitted signals measured using the mounted setup. (b) Calibration signals measured
using the unmounted setup.
Fig. 4. Reflected, transmitted and calibration signals through a 90 μm thick PU slab
irradiated by a shear pulse-like wave at 𝑓𝑐 = 2.25 MHz central frequency and at
temperature 𝑇 = 5 ◦C. The dotted curve represents the asymmetric Tukey window
applied to the signals. Inset: zoom on the signals. The transmitted signal is amplified
40 times.

3.2. Signal analysis and propagation model

Signals are windowed in order to get rid of echoes having experi-
enced a reflection on one transducer-delay line interface, allowing to
consider the delay lines as infinitely long. More precisely, windowing
is made spectrally smooth by using asymmetric Tukey windows, as
illustrated in Fig. 4 [41]. Given the weakness of the transmitted signals,
𝑓min = 1.2 MHz and 𝑓max = 3.7 MHz are rather chosen according to a
−10 dB criterium. Given the characteristic features of the transducers
and the dimensions of the delay lines and sample, 𝑓1 = 0.6 MHz and
𝑓2 = 4.6 MHz. Here also 𝑓min and 𝑓max satisfy 𝑓min > 𝑓1 and 𝑓max < 𝑓2.

On the other hand, assuming (i) infinitely long delay lines and (ii)
that the waves propagating back and forth though the sample and
delay lines are plane waves, a 1D Fabry–Perot interferometer model
adequately describes the reflection and transmission by the delay line-
PU-delay line assembly, leading to the following theoretical expressions
for the transmission coefficient  th and the reflection coefficient th:
⎧

⎪

⎪

⎨

⎪

⎪

 th(𝑐𝑇 , 𝛼𝑇 , 𝜔) =
𝑡01𝑡10𝑒−𝑖𝑘𝑇 ℎ

1 + 𝑟01𝑟10𝑒−2𝑖𝑘𝑇 ℎ

th(𝑐𝑇 , 𝛼𝑇 , 𝜔) = 𝑟01 +
𝑡01𝑟10𝑡10𝑒−𝑖𝑘𝑇 ℎ

1 + 𝑟 𝑟 𝑒−2𝑖𝑘𝑇 ℎ

(7)
4

⎩
01 10
Fig. 5. Variation of the transverse velocity 𝑐𝑑𝑇 in Duralumin versus temperature.

where 0 denotes the delay line, 1 the sample, 𝑟𝑖𝑗 and 𝑡𝑖𝑗 are respec-
tively the stress reflection and transmission coefficients at an interface
between 𝑖 and 𝑗 impinged from 𝑖 and 𝑘𝑇 (𝜔) = 𝜔∕𝑐𝑇 (𝜔) − 𝑖𝛼𝑇 (𝜔) is the
complex transverse wave number in the sample.

It is worth, pointing out that the determination of 𝑘𝑇 from  th and
th is not unique. In the next section, we detail the procedure allowing
to determine the physically relevant value dispersion curve 𝑘𝑇 (𝜔).

To end this subsection, we specify the temperature dependence
of the quantities entering into Eq. (7). The delay lines are made of
2017A Duralumin, whose mass density at 20 ◦C is 𝜌𝑑 = 2790 kg m−3.
Its thermal expansion, which is characterized by its linear expansion
coefficient 𝜅 = 2.3 × 10−5 K−1, results in a 0.24% variation of its mass
density 𝜌𝑑 and in a 0.08% variation of the length of the delay lines in
the investigated temperature range. As shown in Fig. 5, the measured
variation of the transverse velocity 𝑐𝑑𝑇 in Duralumin in the investigated
temperature range is 0.83%. The spacers are made of steel. Owing to
its small linear expansion coefficient 𝜅 ≃ 10−5 K−1, the variation of the
strip thicknesses in the investigated temperature range is 0.03%. Thus,
we neglect their dilatation and we consider their nominal thickness ℎ,
which is provided by the calibration service with a ± 5 μm uncertainty.
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Fig. 6. (a) Variation (in color scale) of the decimal logarithm of the relative error
log10[𝜀∕min(𝜀)] defined by Eq. (8) as function of 𝑐𝑇 and 𝛼𝑇 for the 90 μm thick sample
at central frequency 𝑓𝑐 and temperature 𝑇 = 5 ◦C. The dashed frames enclose the
four minima. (b) Variations versus frequency of the values of 𝑐𝑇 corresponding to the
minima of 𝜀∕min(𝜀) number 1, 2 and 3 for three samples with different thicknesses at
𝑇 = 5 ◦C.

3.3. Dispersion curve selection

In order to determine 𝑘𝑇 (𝜔), for each investigated value of 𝜔, we
compute the 2D array of values of the error 𝜀(𝜔) defined as [40]:

𝜀 (𝜔) = |

|

|

( th)2(𝑐𝑇 , 𝛼𝑇 , 𝜔) − ( exp)2 (𝜔)||
|

2
(8)

with 𝑐𝑇 ranging from 100 m s−1 to 900 m s−1 and 𝛼𝑇 ranging from
0 to 400 dB mm−1. The variations of 𝜀∕min(𝜀) at 𝑇 = 5 ◦C and
𝜔 = 2𝜋𝑓𝑐 versus 𝑐𝑇 and 𝛼𝑇 is represented in color scale in Fig. 6(a).
As a consequence of the periodic behavior of  th with respect to
1∕𝑐𝑇 , four minima (numbered from 1 to 4) can be detected, whose
coordinates correspond to four possible sets of values of 𝑐𝑇 and 𝛼𝑇
at 𝜔 = 2𝜋𝑓𝑐 , labeled 𝑐𝑇 𝑖 and 𝛼𝑇 𝑖, 𝑖 = 1 to 4. In order to select the
physically relevant dispersion curve {𝑐𝑇 (𝜔), 𝛼𝑇 (𝜔)}, two approaches can
be adopted: (i) measuring the reflection and transmission by several
samples having different thicknesses, or (ii) selecting the dispersion
curve that corresponds to the best fit of |

|

|

( th)2||
|

(𝜔) and |

|

|

th|
|

|

(𝜔) by
Eq. (7). In the following, we implement the two approaches.

On the one hand, three samples with different thicknesses, namely
ℎ = 90 μm, 110 μm and 130 μm are measured. The variations versus
frequency of 𝑐𝑇 1, 𝑐𝑇 2 and 𝑐𝑇 3 measured in the three samples are shown
in Fig. 6(b). Since 𝑐𝑇 2(𝜔) is independent of ℎ whereas both 𝑐𝑇 1(𝜔)
and 𝑐𝑇 3(𝜔) depend on ℎ, we conclude that {𝑐𝑇 2(𝜔), 𝛼𝑇 2(𝜔)} is the only
physically relevant dispersion branch.
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Fig. 7. (a) Variations versus frequency of the amplitude of the square of the
experimental transmission coefficient |( exp)2| and of its theoretical predictions |

|

|

( th
1 )2||

|

,
|

|

|

( th
2 )2||

|

and |

|

|

( th
3 )2||

|

, evidencing that  2 cannot be used to select the physically
relevant dispersion curve. (b) Variations versus frequency of the experimental reflection
coefficient |exp

| and of its theoretical predictions |
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|
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, |
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|

th
2
|

|

|

and |

|

|
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|

|

, evidencing
that  can be used to select the physically relevant dispersion curve and that
{𝑐𝑇 2(𝜔), 𝛼𝑇 2(𝜔)} is the only relevant dispersion branch.

On the other hand, we label ||
|

( th
𝑖 )2(𝜔)||

|

(resp. ||
|

th
𝑖 (𝜔)||

|

) the values
of ||

|

( th)2||
|

(resp. ||
|

th|
|

|

) computed using the branch of possible solutions
{𝑐𝑇 𝑖(𝜔), 𝛼𝑇 𝑖(𝜔)}, 𝑖 = 1 to 3. As shown in Fig. 7(a), ||

|

( th
𝑖 )2||

|

coincides with
|

|

|

( exp)2||
|

whatever 𝑖, which prevents us from selecting the physically
relevant dispersion curve using  2. On the contrary, as shown in
Fig. 7(b), |exp

| agrees with |

|

|

th
𝑖
|

|

|

only for 𝑖 = 2, which allows us to
select the physically relevant dispersion curve using  and leads us to
confirm that {𝑐𝑇 2(𝜔), 𝛼𝑇 2(𝜔)} is the only relevant dispersion branch.

Finally, we stress that here the physically relevant dispersion curve
cannot be selected by evaluating the transverse wave velocity from the
pulse time-of-flight through the sample, contrary to the case of less
attenuating and thicker samples [40]. PU is indeed highly attenuating,
which imposes the use of thin samples for measuring a transmitted
signal. Consequently, the reflected and transmitted echoes interfere,
which prevents us from measuring their time-of-flight. Thus, the com-
parison of exp and of th appears as a valuable alternative to the
measurement of the time-of-flight for selecting the physically relevant
dispersion curve in thin samples using a single sample.
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Fig. 8. (a) Phase velocity 𝑐𝑇 and (b) attenuation 𝛼𝑇 of transverse waves in polyurethane
as a function of frequency 𝑓 for several temperatures. Vertical dashed lines correspond
to 𝑓min and 𝑓max, see text. Excess thickness represents the uncertainty, which is
computed as in [40].

3.4. Results

The variations versus 𝑓 of 𝑐𝑇 and 𝛼𝑇 corresponding to the physically
relevant dispersion curve are displayed in Fig. 8 for several tempera-
tures. 𝑐𝑇 exhibits a large dispersion and decreases with 𝑇 . 𝛼𝑇 increases
with frequency 𝑓 . Contrary to 𝛼𝐿, 𝛼𝑇 increases with temperature 𝑇 .

. Exploiting the time–temperature superposition principle

The purpose of this section is to derive scaled expressions for
, 𝐺 and 𝐾 valid for any temperature above 𝑇𝑔 by exploiting the

ime–temperature superposition principle.

.1. Time–temperature superposition principle

PU is known to belong to the category of so-called thermorheologi-
ally simple polymers which obey the time–temperature superposition
TTS) principle [9], i.e. whose dynamic response is related to tempera-
ure by scaling relations. There exists two real scaling functions 𝑎𝑇 and
𝐺
𝑇 such that the frequency dependence of 𝐺 at temperature 𝑇 , 𝐺(𝑓, 𝑇 ),
s related to its frequency dependence at temperature 𝑇ref, 𝐺(𝑓, 𝑇ref)
hrough:

(𝑎 (𝑇 , 𝑇 ) 𝑓, 𝑇 ) = 𝑏𝐺(𝑇 , 𝑇 )𝐺(𝑓, 𝑇 ) (9)
6

𝑇 ref ref 𝑇 ref
On the one hand, above 𝑇𝑔 , 𝑎𝑇 generally satisfies the Williams–
Landel–Ferry (WLF) equality [42,43]:

log10(𝑎𝑇
(

𝑇 , 𝑇ref
)

) = −𝑐1(𝑇ref)
𝑇 − 𝑇ref

𝑐2(𝑇ref) + 𝑇 − 𝑇ref
, (10)

where 𝑐1(𝑇ref) and 𝑐2(𝑇ref) are two functions of 𝑇ref which depend on
the material.

On the other hand, according to Buech–Rouse’s kinetic theory of
polymers [44,45] and Doi–Edwards’s [46] theory that extends the
spectra of Buech–Rouse’s theory, the variation of the shear relax-
ation modulus with temperature varies proportionally to 𝜌𝑇 and 𝑏𝐺𝑇 is
redicted to satisfy:

𝐺
𝑇
(

𝑇 , 𝑇ref
)

=
𝜌(𝑇ref)
𝜌(𝑇 )

𝑇ref
𝑇

(11)

where 𝜌(𝑇 ) is the material mass density at temperature 𝑇 , which
atisfies:

(𝑇 ) = 𝜌(𝑇ref)
[

1 − 3𝜅
(

𝑇 − 𝑇ref
)]

. (12)

iven the typical value of 𝜅 for PUs, for 𝑇ref < 𝑇 , 𝑏𝑇 satisfies
𝑇 (𝑇 , 𝑇ref) < 1.

An open question is whether Eqs. (9), (10), (11) also apply to 𝑀
nd 𝐾.

In the following, 𝐶 denoting 𝐺, 𝑀 or 𝐾, we use the following
complex notation 𝐶 = 𝐶1 + 𝑖𝐶2 valid in the harmonic regime, 𝐶1 being
the storage modulus and 𝐶2 the loss modulus.

4.2. Scaled expressions for 𝑀 , 𝐺 and 𝐾

To exploit the TTS principle, after choosing 𝑇ref, we follow a three-
steps process:

1. Since the measurements of 𝑀 are the most regular, we de-
termine the variation of 𝑎𝑇 (𝑇 , 𝑇ref) versus 𝑇 from 𝑀2∕𝑀1 (as
explained in [47]), then its best fit by Eq. (10).

2. We determine the variation of 𝑏𝑀𝑇 (𝑇 , 𝑇ref) versus 𝑇 from 𝑀1. On
the other hand, we determine the variation of 𝑏𝐺𝑇 (𝑇 , 𝑇ref) versus
𝑇 from 𝐺1.

3. Finally, we evaluate 𝐾 with 𝐾 = 𝑀 − 4∕3𝐺. We perform an-
other determination of 𝑎𝑇 (𝑇 , 𝑇ref) from 𝐾2∕𝐾1 and we determine
𝑏𝐾𝑇 (𝑇 , 𝑇ref) versus 𝑇 from 𝐾1.

4.2.1. Determination of 𝑎𝑇
In order to extrapolate our measurements of 𝑀 toward the low

frequency domain, we choose 𝑇ref = 5 ◦C, as explained below. We
consider the variations versus frequency of 𝑀2∕𝑀1, which are shown
in Fig. 9(a) for all the investigated temperatures numbered in ascending
order 𝑇𝑖, 𝑖 = 1 to 8. According to Eq. (9),
𝑀2
𝑀1

(𝑓, 𝑇 ) =
𝑀2
𝑀1

(𝑎𝑇 (𝑇 , 𝑇ref) 𝑓, 𝑇ref) (13)

As a consequence, for each temperature 𝑇𝑖 we determine the value
𝑎𝑇 (𝑇𝑖, 𝑇ref) of the scaling factor 𝑎𝑇 ensuring that 𝑀2∕𝑀1(𝑓, 𝑇𝑖) coin-
ides with 𝑀2∕𝑀1(𝑎𝑇 (𝑇𝑖, 𝑇ref)𝑓, 𝑇ref) in their common frequency range.
ractically, we determine by iteration the value 𝑎𝑇 (𝑇𝑖+1, 𝑇ref) such that

the point of abscissa 𝑎𝑇 (𝑇𝑖+1, 𝑇ref) 𝑓𝑐 and ordinate 𝑀2∕𝑀1(𝑓𝑐 , 𝑇𝑖+1) coin-
cides with the point of abscissa 𝑎𝑇 (𝑇𝑖, 𝑇ref) 𝑓𝑐 and ordinate
𝑀2∕𝑀1(𝑓𝑐 , 𝑇𝑖) with 𝑎𝑇 (𝑇1, 𝑇ref) = 1 since 𝑇1 = 𝑇ref. The resulting
continuous behavior of 𝑀2∕𝑀1 versus 𝑎𝑇 𝑓 is shown in Fig. 9(b). The
variation of 𝑎𝑇 (𝑇 , 5◦C) versus 𝑇 is shown in inset of Fig. 9(b).

Our choice for 𝑇ref can now be justified. Since the frequency range
of practical interest for underwater applications is typically 1−100 kHz,
we aim to extrapolate the elastic moduli toward frequencies lower than
the frequency range investigated in this work. Since 𝑀2∕𝑀1 decreases
when temperature increases, as shown in Fig. 9(a), choosing for 𝑇ref
the lowest investigated temperature 5 ◦C results in 𝑎𝑇 (𝑇 , 𝑇ref) < 1 for
𝑇 > 𝑇 , which allows us to extrapolate the visco-elastic moduli toward
ref
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Fig. 9. (a) Variations versus frequency of 𝑀2∕𝑀1 for several temperatures 𝑇𝑀
𝑖 , 𝑖 = 1

to 8. (b) Variation of 𝑀2∕𝑀1 versus scaled frequency 𝑎𝑇 (𝑇 , 𝑇ref ) 𝑓 with 𝑇ref = 5.1 ◦C.
Inset: variation of 𝑎𝑇 (𝑇 , 𝑇ref ) versus 𝑇 (symbols) and its best fit by WLF equation (10)
(solid curve).

scaled frequencies 𝑎𝑇 𝑓 lower than the lowest investigated frequency
using the TTS principle. If 40 ◦C was chosen as the reference tempera-
ure, we would be able to extrapolate the visco-elastic moduli toward
requencies higher than the frequency range investigated in this work.

Rearranging Eq. (10) leads to:

− 𝑇ref = −𝑐2 − 𝑐1
𝑇 − 𝑇ref
log10(𝑎𝑇 )

, (14)

o that the variation of 𝑇−𝑇ref versus
(

𝑇 − 𝑇ref
)

∕ log10(𝑎𝑇 ) is linear with
slope −𝑐1 and intercept −𝑐2. 𝑐1 and 𝑐2 are determined that way and
the resulting best fit of 𝑎𝑇 by Eq. (10) is shown in inset of Fig. 9(b).
The corresponding best fit values of 𝑐1 and 𝑐2 are given in Table 1.
They can be compared to values of 𝑐1 and 𝑐2 for other PUs reported
in the literature and given in Table 1 provided that the differences
in reference temperature are taken into account. Indeed, since the
values 𝑐litt

1 and 𝑐litt
2 reported in the literature are determined using other

choices for the reference temperature 𝑇 litt
ref , they have to be transformed

using the following equalities [10]:

𝑐1 =
𝑐litt
1 𝑐litt

2

𝑐litt
2 + 𝑇ref − 𝑇 litt

ref
, (15)

𝑐2 = 𝑐litt
2 + 𝑇ref − 𝑇 litt

ref (16)

so that they correspond to the reference temperature chosen in this
study 𝑇 .
7

ref (
Table 1
Values of the coefficients entering WLF equality Eq. (10) defining 𝑎𝑇 deduced from

and 𝐾. These values are compared to other experimental determinations of these
coefficients reported in literature for three PUs, computed for the same reference
temperature 𝑇ref.

From 𝑀 From 𝐾 Ref. [10] Ref. [5] Ref. [48]

𝑇ref (◦C) 5.1 5.1 5.1 5.1 5.1
𝑐1 6.6 6.3 15.5 9.8 8.5
𝑐2 (K) 143.1 79.7 88.0 90.6 106.2

Fig. 10. (a) Variations of storage longitudinal modulus 𝑀1 versus scaled frequency
𝑎𝑇 𝑓 for several temperatures 𝑇𝑀

𝑖 , 𝑖 = 1 to 8 (same color convention as in Fig. 9(a)).
b) Variations of scaled storage and loss longitudinal moduli 𝑏𝑀𝑇 𝑀1 (solid lines, left-
and vertical scale) and 𝑏𝑀𝑇 𝑀2 (dashed lines, right-hand vertical scale) versus scaled
requency 𝑎𝑇 𝑓 with 𝑇ref = 5.1 ◦C. Inset: experimental variation of 𝑏𝑀𝑇 (𝑇 , 𝑇ref ) versus 𝑇
symbols) and its best linear fit (solid line).

As shown in Table 1, the measured 𝑐1 and 𝑐2 are close to those of
ther PUs. This is in line with the general observation that 𝑐1 ∼ 10 and
2 ∼ 100 K for PUs [42].

.2.2. Determination of 𝑏𝑀𝑇 and 𝑏𝐺𝑇
etermination of 𝑏𝑀𝑇 . We consider the variations versus frequency of

he storage modulus 𝑀1 at several temperatures 𝑇𝑀
𝑖 , 𝑖 = 1 to 8, which

re shown in Fig. 10(a).
In order to determine the scaling factor 𝑏𝑀𝑇 that would satisfy:

(𝑎𝑇 (𝑇 , 𝑇ref) 𝑓, 𝑇ref) = 𝑏𝑀𝑇 (𝑇 , 𝑇ref)𝑀(𝑓, 𝑇 ) (17)

e determine by iteration its value 𝑏𝑀𝑇 (𝑇𝑖+1, 𝑇ref) such that the point
f abscissa 𝑎𝑇 (𝑇𝑖+1, 𝑇ref) 𝑓𝑐 and ordinate 𝑏𝑀𝑇 (𝑇𝑖+1, 𝑇ref)𝑀1(𝑓𝑐 , 𝑇𝑖+1) coin-
ides with the point of abscissa 𝑎𝑇 (𝑇𝑖, 𝑇ref) 𝑓𝑐 and ordinate 𝑏𝑀𝑇
𝑇 , 𝑇 )𝑀 (𝑓 , 𝑇 ) with 𝑏𝑀 (𝑇 , 𝑇 ) = 1 since 𝑇 = 𝑇 .
𝑖 ref 1 𝑐 𝑖 𝑇 1 ref 1 ref



Ultrasonics 137 (2024) 107166Q. Baudis et al.

f
s
e
t

F

𝑇
p
a
a
l
e

4

a
𝑀

i
p
s
𝑓
o
d
t
i
𝑐

𝐾

f
v
i
5
t

Fig. 11. (a) Variations of storage and loss shear moduli 𝐺1 and 𝐺2 versus scaled
requency 𝑎𝑇 𝑓 for several temperatures 𝑇 𝐺

𝑖 , 𝑖 = 1 to 7. (b) Variations of scaled
torage and loss shear moduli 𝑏𝐺𝑇 𝐺1 and 𝑏𝐺𝑇 𝐺2 versus scaled frequency 𝑎𝑇 𝑓 . Inset:
xperimental variation of 𝑏𝐺𝑇 (𝑇 , 𝑇ref ) versus 𝑇 with 𝑇ref = 5.1 ◦C (symbols) and its
heoretical prediction Eq. (11) (solid line).

The resulting continuous behavior of 𝑏𝑀𝑇 𝑀1 versus 𝑎𝑇 𝑓 is shown in
ig. 10(b). As shown in inset of Fig. 10(b), 𝑏𝑀𝑇 (𝑇 , 𝑇ref ) increases linearly

with 𝑇 , whereas Eq. (11) predicts a decreasing behavior. The slope of
the best linear fit of 𝑏𝑀𝑇 (𝑇 ) is 6.07 × 10−3 K−1.

As shown in Fig. 10(b), 𝑏𝑀𝑇 𝑀2 also varies continuously with 𝑎𝑇 𝑓 ,
which confirms the validity of Eq. (17) concerning 𝑀 .

Determination of 𝑏𝐺𝑇 . Now we consider the variations versus frequency
of storage modulus 𝐺1 and loss modulus 𝐺2 at several temperatures 𝑇𝐺

𝑖 ,
𝑖 = 1 to 7, which are shown in Fig. 11(a). We note that 𝐺1 and 𝐺2 are
close, which evidences the high attenuation of this PU and highlights
the performances of the sandwich technique.

The scaling factor 𝑏𝐺𝑇 as defined by Eq. (9) is determined from 𝐺1
in the same manner as 𝑏𝑀𝑇 .

The resulting continuous behavior of 𝑏𝐺𝑇𝐺1 versus 𝑎𝑇 𝑓 is shown in
Fig. 11(b). As shown in inset of Fig. 11(b), the variation of 𝑏𝐺𝑇 (𝑇 , 𝑇ref )
with 𝑇 is quantitatively described by Eq. (11). Note that the variation
of 𝑏𝐺𝑇 with 𝑇 as predicted by Eq. (11) is mainly due to the variation of
𝑇ref∕𝑇 . This may explain why previous measurements of 𝐺 and Young’s
modulus 𝐸 of PUs [10] led to fit 𝑏𝐺𝑇 using the simplified relation
𝑏𝐺𝑇 (𝑇 , 𝑇ref ) = 𝑇ref∕𝑇 .

As shown in Fig. 11(b), 𝑏𝐺𝑇𝐺2 also varies continuously with 𝑎𝑇 𝑓 ,
which confirms the validity of Eq. (9) concerning 𝐺.
8

d

Fig. 12. (a) Squares: variation versus 𝑇 of 𝑎′𝑇 (𝑇 , 𝑇ref ) determined from 𝐾2∕𝐾1 with
ref = 5.1 ◦C and its best fit by WLF equation (10) (solid curve). Circles: for comparison
urpose, we display again the variation versus 𝑇 of 𝑎𝑇 (𝑇 , 𝑇ref ) determined from 𝑀2∕𝑀1
nd its best fit by WLF equation (10) (bold solid curve). (b) Variation of scaled storage
nd loss bulk moduli 𝑏𝐾𝑇 𝐾1 (solid lines, left-hand vertical scale) and 𝑏𝐾𝑇 𝐾2 (dashed
ines, right-hand vertical scale) versus scaled temperature 𝑎′𝑇 𝑓 with 𝑇ref = 5.1 ◦C. Inset:
xperimental variation of 𝑏𝐾𝑇 (𝑇 , 𝑇ref ) versus 𝑇 and its best linear fit (solid line).

.2.3. Other determination of 𝑎𝑇 from 𝐾 and determination of 𝑏𝐾𝑇
Since 𝑇𝑀

𝑖 ≃ 𝑇𝐺
𝑖 , 𝑖 = 1 to 7, the bulk modulus 𝐾 can be evalu-

ted from the raw measurements of 𝑀 and 𝐺 assuming 𝐾(𝑇𝑀
𝑖 , 𝑓 ) =

(𝑇𝑀
𝑖 , 𝑓 ) − 4∕3 𝐺(𝑇𝐺

𝑖 , 𝑓 ), 𝑖 = 1 to 7.
Although 𝐾2∕𝐾1 evaluated at several temperatures 𝑇𝑀

𝑖 (𝑖 = 1 to 7)
s observed to vary approximately continuously with the scaled tem-
erature 𝑎𝑇 𝑓 , a further optimization effort leads to note that 𝐾2∕𝐾1 is
moother when 𝑎𝑇 is determined as in sub Section 4.2.1 by considering
= 1.8 MHz instead of 𝑓𝑐 . The resulting variation versus temperature

f this new determination of 𝑎𝑇 called 𝑎′𝑇 is plotted in Fig. 12(a). The
iscrepancy between 𝑎𝑇 and 𝑎′𝑇 can be considered as a assessment of
he uncertainty of the determination of 𝑎𝑇 . The best fit of 𝑎′𝑇 by Eq. (10)
s shown in Fig. 12(a) and the corresponding best fit values of 𝑐1 and
2 are given in Table 1.

Then we determine the scaling factor 𝑏𝐾𝑇 that would satisfy:

(𝑎𝑇 (𝑇 , 𝑇ref) 𝑓, 𝑇ref) = 𝑏𝐾𝑇 (𝑇 , 𝑇ref)𝐾(𝑓, 𝑇 ) (18)

rom 𝐾1 following the procedure detailed in sub Section 4.2.2. The
ariation of 𝑏𝐾𝑇 versus temperature 𝑇 with 𝑇ref = 5.1 ◦C is displayed in
nset of Fig. 12(b). 𝑏𝐾𝑇 increases linearly with 𝑇 . We note that the slope
.40×10−3 K−1 of its best linear fit is close to the slope 4.2×10−3 K−1 of
he linear variation of 𝑏𝐾𝑇 versus 𝑇 of the PU studied in [5] which was

etermined by combination of DMA and longitudinal measurements.
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Table 2
Values of the coefficients entering Eq. (19) fitted to 𝑀 , 𝐺 and
𝐾 for the PU studied here.
𝐶 = 𝑀 𝐺 𝐾

𝐶0 (MPa) 2335 4.23 2329
𝐶𝑣 (kPa s) 204.16 19.51 1231
𝛼𝐶 0.422 0.503 0.280

The variation of scaled bulk modulus 𝑏𝐾𝑇 𝐾 versus scaled temperature
′
𝑇 𝑓 with 𝑇ref = 5.1 ◦C is displayed in Fig. 12(b). The continuous
ehaviors of 𝑏𝐾𝑇 𝐾1 and 𝑏𝐾𝑇 𝐾2 versus 𝑎𝑇 𝑓 , shown in Fig. 12(b), confirms
he validity of Eq. (18) concerning 𝐾.

Finally, we note that 𝑏𝐾𝑇 𝐾2 > 0, which corresponds to the fulfillment
f the passivity condition established by Norris for isotropic, linear,
isco-elastic media [49].

. Fractional derivative model

As shown in Fig. 13(a–c), 𝑏𝑀𝑇 𝑀2, 𝑏𝐺𝑇𝐺2 and 𝑏𝐾𝑇 𝐾2 behave as a
ower laws of 𝑎𝑇 𝑓 with exponent distinctly smaller than unity. Thus, a
inear rheological model is not suitable for describing their viscoelastic
ehavior. As shown in Fig. 13(b), 𝑏𝐺𝑇𝐺2 actually behaves as a power
aw of 𝑎𝑇 𝑓 with exponent close to its theoretically predicted value
∕2 [42,44].

As proposed in [50], the use of fractional order derivatives is found
o accurately describe the rheological behavior of polymers. Accord-
ngly, in the harmonic regime, the complex modulus 𝐶 (𝐶 = 𝑀 , 𝐺 or
) satisfies:

(𝜔) = 𝐶0 + 𝐶𝑣(𝑖𝜔)𝛼𝐶 , (19)

r equivalently:

1 = 𝐶0 + 𝐶𝑣 cos
(𝜋
2
𝛼𝐶

)

𝜔𝛼𝐶 (20)

2 = 𝐶𝑣 sin
(𝜋
2
𝛼𝐶

)

𝜔𝛼𝐶 (21)

egarding 𝑀 , 𝐺 and 𝐾, 𝐶0 𝐶𝑣 and 𝛼 are determined by optimization
using Python lmfit library. The best fit values of 𝐶0, 𝛼 and 𝐶𝑣 are shown
in Table 2.

The resulting best fits of 𝑀 , 𝐺 and 𝐾 by Eq. (19) are shown in
Figs. 13(a-c). We conclude to a quantitative agreement between the
measurements of 𝑀 , 𝐺 and 𝐾 and the fractional Kelvin–Voigt model.

6. Conclusion and

This work constitutes a thorough study of the visco-elastic prop-
erties of a cross-linked PU in the ultrasonic frequency range resulting
in the accurate determination of its longitudinal and shear moduli as
a function of temperature above glass transition temperature and of
frequency. This could be achieved by analyzing both the reflection and
transmission of longitudinal and transverse waves by slabs of PU and
by applying the TTS principle. A fractional derivative rheological model
could be successfully fitted to the scaled bulk and shear moduli.

The techniques and methods presented in this article can be con-
sidered as generic for characterizing the rheology of soft, visco-elastic
materials. Softer materials (i.e. materials with smaller 𝐺1) can be
considered but the smaller 𝐺1, the smaller the transmission coefficient
as the result of the larger impedance contrast between the sample and
the delay lines, and consequently the smaller the signal-to-noise ratio
(SNR) of the transmitted signal. To overcome this, the samples can be
made thinner, however the control of the flatness and parallelism of the
delay line surfaces is more crucial. Another material constituting the
delay lines can also be considered for this purpose. For example PMMA
(plexiglas) would result in a reduction of the shear wave impedance of
9

Fig. 13. (a) Variations in log–log scales of scaled storage and loss moduli versus scaled
frequency with 𝑇ref = 5.1 ◦C: (a) Longitudinal modulus 𝑏𝑀𝑇 𝑀1 (solid lines, left-hand
ertical scale) and 𝑏𝑀𝑇 𝑀2 (dashed lines, right-hand vertical scale) versus 𝑎𝑇 𝑓 for several

temperatures 𝑇𝑀
𝑖 , 𝑖 = 1 to 8 (same color convention as in Fig. 9(a)). (b) Shear modulus

𝑏𝐺𝑇 𝐺1 (solid lines) and 𝑏𝐺𝑇 𝐺2 (dashed lines) versus 𝑎𝑇 𝑓 for several temperatures 𝑇 𝐺
𝑖 ,

𝑖 = 1 to 7 (same color convention as in Fig. 11(a)). Black dotted curve: power-law with
exponent 1∕2. (c) Bulk modulus 𝑏𝐾𝑇 𝐾1 (solid lines, left-hand vertical scale) and 𝑏𝐾𝑇 𝐾2
(dashed lines, right-hand vertical scale) versus 𝑎′𝑇 𝑓 for several temperatures 𝑇𝑀

𝑖 , 𝑖 = 1
to 7. Black solid curves: best fit by Eq. (19).

the delay line by a factor 5, but the large attenuation (of the order of
100 m−1 in the MHz frequency range) would result in a decrease of the
SNR [40].
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Fig. A.14. Variations of (a) scaled storage shear modulus 𝑏𝐺𝑇 𝐺1 and (b) scaled loss
hear modulus 𝑏𝐺𝑇 𝐺2 versus scaled frequency 𝑎𝑇 𝑓 that were measured twice on one
110 μm-thick sample and on one 90 μm-thick sample with 𝑇ref = 5 ◦C.
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ppendix A. Repeatability

In this appendix, we quantify the repeatability of the experiments.
On the one hand, as shown in Fig. 2, the discrepancy between the

eterminations of 𝑐𝐿 and 𝛼𝐿 from two different samples is of the order
f 0.5% regarding 𝑐𝐿 and 5.0% regarding 𝛼𝐿. We do not go further into
his concern since the immersion technique is standard.

On the other hand, as shown in Fig. A.14, the discrepancy between
he determinations of 𝐺 and 𝐺 from three different experiments
10

1 2
Fig. B.15. Variations of (a) scaled storage shear modulus 𝑏𝐺𝑇 𝐺1 (solid lines) and
(b) scaled loss shear modulus 𝑏𝐺𝑇 𝐺2 (dashed lines) versus scaled frequency 𝑎𝑇 𝑓 with
𝑇ref = 5 ◦C of two different 110 μm-thick samples hardened at two different temperatures
𝑇𝑐 = 5 ◦C (blue lines) and 𝑇𝑐 = 35 ◦C (red lines). Excess thickness represents the scatter
associated to repeatability tests.

(entailing two samples with the same thickness, namely 110 μm, and
one 90 μm-thick sample) is of the order of 12−16% and increases with
frequency.

Appendix B. Influence of the hardening temperature

In this appendix, we evaluate the influence of the hardening tem-
perature on PU rheological properties.

Regarding 𝑀 , cross-linking was performed at two different temper-
atures, namely 25 ◦C and 80 ◦C. No effect of the hardening temperature
on 𝑐𝐿 and 𝛼𝐿 could be measured.

Regarding 𝐺, cross-linking was performed at two different tempera-
tures, namely 𝑇𝑐 = 5 ◦C and 𝑇𝑐 = 35 ◦C. As shown in Fig. B.15, 𝐺1 and
𝐺2 markedly depend on 𝑇𝑐 , i.e. their sensitivity to 𝑇𝑐 is larger than the
scatter associated to the lack of repeatability of the measurement tech-
nique. We conclude that the cross-linking temperature has a noticeable
effect on 𝐺. This demonstrates the importance of temperature control
during the hardening process.

Appendix C. Monitoring of the hardening process

The hardening kinetics of cross-linking polymers can be monitored
using ultrasound, see [51,52] and references therein. For hard polymers
such that 𝐾 ≃ 𝐺, the variations of 𝐺 can be accessed through 𝑀 .
Consequently, their hardening can be monitored using longitudinal
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Fig. C.16. (a) Temporal evolutions of storage and loss shear moduli at frequency 𝑓𝑐
during the cross-linking process occurring at temperature 𝑇𝑐 = 5 ◦C of a ℎ = 110 μm
sample. The darker the curve, the later its acquisition time. (b) Temporal evolutions of
storage and loss shear moduli at frequency 𝑓𝑐 during the cross-linking process occurring
at temperature 𝑇𝑐 = 5 ◦C of two samples with different thicknesses ℎ = 90 μm and
ℎ = 110 μm.

waves. For soft materials such that 𝐺 ≪ 𝐾, hardening has a little effect
on 𝑀 , so that its monitoring using longitudinal waves is not relevant.

The hardening of cross-linking polymers could also be directly
monitored using shear waves [53,54], provided that their attenuation is
not too large. In this appendix, we show how the setup used to measure
the transverse velocity and attenuation of cross-linked PU samples can
also be used to monitor the PU hardening process, more precisely to
a posteriori evaluate the evolution of PU shear modulus during this
process.

For this purpose, during the hardening process that occurs at con-
trolled temperature 𝑇𝑐 , the reflected and transmitted signals are ac-
quired on a regular basis. They are observed to evolve in time during
this process. When they do not evolve anymore, the PU hardening
process is assumed as achieved, the last acquired signals are considered
as the steady-state signals, the setup is unmounted and the calibration
signals are acquired at the same temperature.

Given Eq. (6), the shear modulus of the hardening PU at time
𝑡 can be determined using the following expression of the Fourier
transform of the square of the transmission coefficient measured at time
𝑡, ( exp)2(𝜔, 𝑡):

( exp)2(𝜔, 𝑡) = ( exp)2final
�̂�(𝜔, 𝑡)
�̂�final(𝜔)

(C.1)

where ( exp)2final is the steady-state signal. Fig. C.16(a) displays the time
evolution of 𝐺 during the hardening at 𝑇 = 5 ◦C of a ℎ = 110 μm thick
11

𝑐

Fig. C.17. (a) Temporal evolution of storage and loss shear moduli at frequency 𝑓𝑐
during the cross-linking process occurring at two different temperatures 𝑇𝑐 = 5 ◦C and
𝑇𝑐 = 35 ◦C. (b) Temporal evolution in log–log scales of the dimensionless deviation
of 𝐺1 (resp. 𝐺2) from its final value 𝐺1∞ (resp. 𝐺2∞) during the cross-linking process
occurring at two different temperatures 𝑇𝑐 = 5 ◦C and 𝑇𝑐 = 35 ◦C (𝑡0 = 103 s).

sample. We note the increase in time of 𝐺1 and 𝐺2 and the appearance
of a plateau for 𝐺1 at low frequencies, which can be ascribed to PU
hardening. Fig. C.16(b) displays the time evolution of 𝐺 at central
frequency 𝑓𝑐 during the hardening at 𝑇𝑐 = 5 ◦C of two samples with
different thicknesses, namely ℎ = 90 μm and ℎ = 110 μm. We note
that the variation of 𝐺 during the cross-linking process is marked and
noise-free. More precisely, both 𝐺1 and 𝐺2 increase in time with a
steep evolution after about one hour of hardening. The jump of 𝐺1
can be interpreted as the transition of PU from liquid behavior to solid
behavior. Besides, the absence of trend in the variation of 𝐺 with ℎ
demonstrates the independence of the cross-linking kinetics regarding
ℎ, which indicates that these thin samples do not undergo any notice-
able self-heating during the cross-linking reaction and that the reaction
is not affected by noticeable finite-size effect. This demonstrates that
this technique can be actually used to monitor a bulk cross-linking
reaction and allows to foresee a parametric, quantitative monitoring
of the hardening kinetics using shear waves.

Fig. C.17(a) displays the time evolution of 𝐺 at frequency 𝑓𝑐 during
the hardening at two different temperatures 𝑇𝑐 = 5 ◦C and 𝑇𝑐 = 35 ◦C.
We observe that the larger 𝑇𝑐 , the earlier the inflection of the 𝐺1(𝑡) and
𝐺2(𝑡) curves occurs. This is in agreement with the empirical observation
that PU hardening is activated by temperature [37].

More precisely, Fig. C.17(b) displays the temporal evolution of the
dimensionless deviation of 𝐺1 (resp. 𝐺2) at frequency 𝑓𝑐 from its final
value 𝐺1∞ (resp. 𝐺2∞) at late times during the cross-linking process
occurring at two different temperatures 𝑇 = 5 ◦C and 𝑇 = 35 ◦C. We
𝑐 𝑐
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note that these quantities evolve as power laws of time with exponent
−0.70, indicating a long transient toward complete hardening.
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