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a b s t r a c t

Multiple scattering effects due to a random distribution of identical spheres are inves-
tigated in the general case of elastic or poroelastic host media, where both longitudinal
and transverse waves may co-exist. Propagation of plane coherent waves is assumed,
and their dispersion equation looked for, as well as analytic approximations of those
particular solutions that are close to the wavenumbers in the free host, when the product
of the concentration with the scattering cross section of the spheres is low. Under this
last condition, pair-correlation effects are seen to be of second order. Numerical studies
are performed under the hole correction assumption, and compared to experimental data
for tungsten carbide spheres in an epoxy matrix, which is a rather illustrative situation
of how longitudinal and transverse waves participate to coherent propagation.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Multiple scattering by random arrangements of scatterers is a topic with an extensive literature that has preoccupied
esearchers for many years, as can be seen, for example, from the many references in V.K. Varadan’s et al. [1], Tsang
t al.’s [2] and P. Martin’s [3] books. The T-matrix method is well suited for the study of scattering by a two or three
imensional object, and there are basically two different approaches based on it in multiple scattering problems.
The first approach consists in writing down the multiple scattering equations and solving the resulting large linear

ystem [4–6]. Its great advantage is the possibility of considering arbitrary dispersions of scatterers with any concentration,
ut its basic disadvantage is that the numerical work involved is computationally challenging, especially for three
imensional problems [7–9], even though recent and still ongoing research [10–12] makes the calculations faster for larger
oncentrations of particles. Effective properties may be deduced from such calculations, but the investigation of the effect
n effective properties of different parameters such as the concentration of scatterers or their inner properties, is still
umbersome. Although T-matrix methods have been formulated for elastic wave scattering [13,14], very little work has
een reported on simulating full elastic wave propagation in random particulate systems with mode conversion between
ongitudinal and rotational (transverse) waves [15].

In the second approach, knowledge of the statistics of the random distribution of scatterers is required and an average
alue of the scattered field is sought. Dispersion equations for the effective wavenumbers are looked for, and analytical
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ormulas for a few approximate solutions can be obtained in some particular situations (low concentration, or large
avelengths to particles radius ratii, ..). This is a classic topic with a large literature (see e.g. Refs. [16,17]), with modern
ra dating from the works of Foldy [18], Lax [19] and Fikioris and Waterman [20]. This approach has the disadvantage of
onsidering only isotropic random distributions of scatterers and of being limited in concentration, but has the advantage
f producing analytical results that give insight into the scattering phenomena, and this is the reason why we chose to
ork within Fikioris and Waterman’s framework. Again, elastic host media (vectorial case) have received less attention
han the media where the propagation includes only one type of waves (scalar case).

Performing numerical calculations in order to analyze the propagation of elastic waves in a medium containing a
andom distribution of spheres will still be a challenge for the years to come. This is one of the reasons that explain
he persistent interest of the statistical approach, which is at the heart of this paper. Not all methods are based on the T-
atrix [21–24], but the latter has the advantage of dealing with both low and high frequencies and obtaining closed-form
xpressions for the wavenumbers of the coherent waves in all cases. More recently, the authors of Refs. [25,26], using
he Wiener–Hopf technique, also with no assumptions on the wavelengths, the particle boundary conditions/size, or the
olume fraction, have demonstrated the existence of several effective wavenumbers, even in the scalar case, but this is
ut of the topic of this paper.
The first paper, to our knowledge, dealing with the propagation of coherent waves in an elastic medium using the

-matrix is that of Varadan et al. [27], although a large part of the results had already been published in the book edited
y V.K.Varadan and V.V.Varadan [1]. The most significant result was to obtain closed-form expressions for the longitudinal
nd transverse wavenumbers in the Rayleigh or low-frequency limit, and to show the excellent agreement between the
hase velocity of the longitudinal coherent wave with Kinra’s experimental data [28].
Neglecting longitudinal waves to keep only transverse waves amounts to considering the electromagnetic case, as

reated in the 80’s by Tsang et Kong [29] and then by Fikioris et Waterman [30] in a more comprehensive and clearer
ay. Unlike in Ref. [27], the extinction theorem is used in Ref. [30] in order to calculate the reflection and the transmission
t the interface between a homogeneous medium and a multiple scattering one. This leads to the interesting result that the
olarization of a transverse incident wave is preserved through the transmission process at the interface. This important
oint, which is not discussed by Fikioris et Waterman, can be deduced directly from the comparison of Eqs. (8,41,50) in
ef. [30]. As Varadan et al. [27], both Refs. [29,30] obtain a closed-form expression of the transverse wavenumber, but
ritten explicitly in terms of the scattering coefficients of the T-matrix. The main advantage of a closed-form such as
q. (57) in Ref. [29] is to be valid from low to high frequencies ; it is obtained from a first order asymptotic expansion in
oncentration, under the assumption of small spheres concentration, as in Foldy’s approximation [18].
The elastic case has been considered for an incident longitudinal wave within the framework of the Quasi Crystalline

pproximation in Ref. [31]. As in Ref. [29], closed-form expressions were given for all frequencies. The asymptotic ex-
ansions were performed up to order two in concentration, thus introducing the products between scattering coefficients
nd, consequently, the coupling between longitudinal and rotational waves (c.f. Eqs. ((29))–(32). In order to do so, all fields
ere assumed invariant with respect to the azimuth angle in the plane perpendicular to the direction of propagation of the
oherent waves. This is debatable, especially for transverse coherent waves, and had led to a misuse of the scalar addition
heorem all over, even for shear waves. No such assumption is done here, and Ref. [31] is corrected. The asymptotic
xpansions of the effective wavenumbers are also done around those in the free host, not only at low concentration as
n Refs. [31,32], but in the more general case of low concentration times scattering, so that the effect of pair correlation
etween scatterers appears not only at third order, but also at second order.
We chose to follow the same steps as the statistical theory developed first in acoustics [20] and later in electro-

agnetism [29,30]: conditional ensemble averaging, under the quasi-crystalline approximation, of the basic multiple
cattering equations that express the fields outside the particles in the host medium. These equations are obtained by
eans of the T-matrix that relates a scattered wave amplitude to an exciting one, and of an addition theorem that
escribes scattered waves from one particle as incident waves on another. Contrary to other more recent methods
eveloped in the electromagnetic case in Refs. [33,34], the averaged exciting field on any given particle, or the effective
ield, is then supposed to be equal to a linear combination of plane waves propagating in the same direction as the incident
lane wave that was at the origin of the multiple scattering process, and the dispersion equation that provides the effective
avenumbers is obtained therefrom. In elasticity, where both longitudinal and transverse waves propagate, both the scalar
nd the vectorial addition theorems have to be used, which had not been done in Ref. [31], but is here. We also consider
ny isotropic host medium, whether elastic [35], poroelastic [36,37] or else, as long as the T-matrix can be calculated.
n short, the developed method generalizes the known results obtained in electromagnetism to elasticity, in particular
or transverse incident waves which can generate rotational resonances [38], and also takes into account viscosity and
hermal effects. It is also a corrected version of Ref. [31]. Applications of effective theories in such random media may
ange from ultrasonic characterization of suspensions [39] to metamaterials design [40], even for aqueous suspensions,
here the shear waves in an even slightly viscous fluid can be of noticeable influence in attenuation measurements for
xample [41].
This paper is organized as follows: Section 2 deals with the description of the host medium that contains a random

istribution of spheres. The average fields within Fikioris and Waterman’s framewok are described in Section 3. The
xtinction theorem and the Lorentz–Lorenz law are obtained in Section 4. Section 5 is dedicated to the matrix form of the
orentz–Lorenz law that leads to the dispersion equations of the coherent waves. Closed-form expressions of the effective
avenumbers are given in Section 6 when the product of the concentration with the scattering cross section is low. The
articular case of elastic media is considered in Section 7, in which numerical results are compared to experimental data

f Simon et al. [38,42].
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. Description of the host medium

We consider an isotropic medium in which L longitudinal (non rotational) waves and R rotational (divergence free)
ones, may propagate. For example, L = R = 1 in a viscous fluid or in a (visco)elastic solid, L = 2 and R = 1 in a Biot
medium or a heat conducting fluid, and L = R = 2 in a porous medium saturated with a viscous fluid [43]. This medium
hosts, in the z > 0 region, a random array of identical spheres of radius a, and an incident plane wave propagating in
the z direction gives rise to a multiple scattering process between all spheres; we look for the dispersion equation of
the coherent waves that may describe the average propagation in the z > 0 region (see, for example, Ref. [44] for the
definition of coherent waves).

We use the same methodology as in Refs. [31,45] and look again for asymptotic expansions of the effective wavenum-
bers, with no assumptions about the azimuth dependence of the fields, and using both the scalar addition theorem and
the vectorial one to express the fields scattered from a sphere as incident waves upon another, contrary to what was done
in Ref. [31].

The displacement field in the host medium is a linear combination of waves of all possible types,

u⃗
(
r⃗
)

=

L∑
p=1

∇⃗φ(p) (r⃗) +

R∑
p=1

∇⃗ ∧ Ψ⃗p
(
r⃗
)
, (1)

and, using Debye potentials [46], each potential vector Ψ⃗p is decomposed, in any local spherical orthornormal basis{
e⃗r , e⃗θ , e⃗φ

}
, as Ψ⃗p

(
r⃗
)

= ∇⃗ ∧ (φ(L+p)re⃗r )+ (1/kp) ∇⃗ ∧ ∇⃗ ∧ (φ(L+p+1)re⃗r ). The rotational waves that have a radial component
of the displacement in a given spherical system may couple to longitudinal ones through scattering by a target centered
at the center of that coordinate system; they will be termed as ‘‘s-waves’’, as in Ref. [46], and those that may not, as
‘‘t-waves’’. For a given rotational wave, there is one ‘‘s’’ and one ‘‘t’’ wave, associated to the same wavenumber, in a given
local coordinate system ; change for another spherical coordinate system leads to a different mixture of the ‘‘s’’ and ‘‘t’’
parts of that same rotational wave.

Letting P = L+ 2R denote the number of different types of local polarization (one for each longitudinal wave, two for
each rotational wave) in a given local spherical system, u⃗(p) will stand for the particle displacement associated to a wave
of type p, with p ∈ L ⇔ 1 ≤ p ≤ L for a non-rotational wave, p ∈ S ⇔ p = L + 1, L + 3, . . . , P − 1 for an ‘‘s’’ one,
and p ∈ T ⇔ p = L + 2, L + 4, . . . , P for a ‘‘t’’ one. p in S will be the ‘‘s’’ part of a rotational wave whose ‘‘t’’ part is
p + 1, and, of course, p in T will be the ‘‘t’’ part of a rotational wave whose ‘‘s’’ part is p − 1, in a fixed given spherical
system. Taking the well-known example of a Biot porous medium saturated with a fluid, u⃗(1) would be associated to the
fast compressional wave, u⃗(2) to the slow one, u⃗(3) to the ‘‘s’’ part of the first rotational wave, and u⃗(4) to its ‘‘t’’ part. and
u⃗(5), u⃗(6) to the ‘‘s’’ and ‘‘t’’ parts of a potential second rotational wave [43].

We use non normalized vector spherical harmonics and shorthand notations,

Z⃗
(p)
mn(r⃗) =

⎧⎪⎨⎪⎩
∇⃗Zmn(kp, r⃗) for p ∈ L,

∇⃗ ∧ ∇⃗ ∧ re⃗rZmn(kp, r⃗) for p ∈ S,
1
kp

∇⃗ ∧ ∇⃗ ∧ ∇⃗ ∧ re⃗rZmn(kp, r⃗) for p ∈ T ,

(2)

with Zmn = Jmn,Hmn, kp+1 = kp when p ∈ S , and

Jmn(kp, r⃗) = jn(kpr)Pm
n

(
cos θ (r⃗)

)
eimφ(r⃗), Hmn(kp, r⃗) = h(1)

n (kpr)Pm
n

(
cos θ (r⃗)

)
eimφ(r⃗), (3)

Pm
n the same associated Legendre function as in Ref. [47], and∑

n,m

=

+∞∑
n=0

n∑
m=−n

. (4)

. Average fields in Fikioris and Waterman’s framework

.1. The multiple scattering equations

Let u⃗(p)
E (r⃗; r⃗j) denote the displacement field of type p in the spherical coordinate system centered at r⃗j, that, while

observed at r⃗ , excites a scatterer centered at r⃗j. As in Ref. [31], we start with the integral equation, obtained after averaging
the fields incident upon one scatterer over all possible locations of the others under the quasi-crystalline approximation.
This integral equation governs the coherent fields, denoted by brackets, and states that the p-exciting wave u⃗(p)

E (r⃗; r⃗1) on a
given target centered at r⃗1 is due to the plane incident wave u⃗(p)

inc(r⃗; r⃗1) of the same type p, and to all other waves u⃗(q)
E (r⃗; r⃗j)

of type q scattered by a sphere centered at r⃗j into waves of type u, thanks to the T (qu)(r⃗j) scattering operator, provided
those scattered waves represent, in the local system centered at r⃗1, incident waves of type p:

⟨u⃗(p)
E (r⃗; r⃗1)⟩ = u⃗(p)

inc(r⃗; r⃗1) +

P∑ P∑
δkukp

∫
d r⃗j n(r⃗j, r⃗1)G(up)(r⃗j, r⃗1)T (qu)(r⃗j)⟨u⃗

(q)
E (r⃗; r⃗j)⟩. (5)
q=1 u=1

3
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n Eq. (5), as well as in the following equations, except Eq. (24), letters as superscripts indicate a type of wave, longitudinal,
or t. Those of operators, fields, and matrices are in parentheses, while they are not for elements of the latter, in order
o distinguish between them more easily. The G(up)(r⃗j, r⃗1) and T (qu)(r⃗j) operators are defined respectively in Eqs. (14) and
11). Transformation of a scattered u- wave in the spherical system of r⃗j into incident p- waves in the spherical system of
r1 is possible only if kp and ku are equal, and it is illustrated in Eq. (5) by the δkukpG

(up)(r⃗j, r⃗1) operator defined in Eq. (14),
hile scattering of a q - wave into a u - wave at a sphere centered at r⃗j is illustrated by the T (qu)(r⃗j) scattering operator
efined below in Eqs. (11).
Eq. (5) is similar to Eq. (10) in Ref. [29] and Eq. (1) in Ref. [30], with longitudinal waves added, and the distinction

etween the ‘‘s’’ and ‘‘t’’ parts of a rotational wave in the spherical systems centered at r⃗j and r⃗1 already done, while it
as done only after decomposing the fields upon spherical harmonics in Refs. [29,30].
The integration in Eq. (5) is over the (z > 0) region, n(r⃗j, r⃗1) is the conditional number density of spheres at r⃗j if one is

nown to be at r⃗1, and we assume a constant density n0 of scatterers of radius a, and conditional number density given
y [48–50]

n(r⃗, r⃗j) =

{
n0 [1 + U (r, n0)] for r =

⏐⏐r⃗ − r⃗j
⏐⏐ > b,

0 otherwise,
(6)

with b ≥ 2a and the Ursell function U obeying

lim
n0→0

U(r, n0) = lim
r→∞

U(r, n0) = 0. (7)

n the following, harmonic wave motion is supposed with time dependence exp(−iωt) understood.
The incident plane wave of amplitude a(p) propagates in the z direction ; in the spherical coordinates system centered

n sphere number 1, it is either a linear combination of spherical harmonics of orders m = 0, if longitudinal, or m = ±1,
f rotational; in that latter case, it is supposed in the following to be polarized in the y direction as in Ref. [29]:

∀p ∈ L,

u⃗(p)
inc(r⃗; r⃗1) = a(p)eikpz1

+∞∑
n=0

in(2n + 1)⃗J
(p)
0n (ρ⃗1) , (8a)

∀p ∈ S

u⃗(p)
inc(r⃗; r⃗1) = a(p)eikpz1

+∞∑
n=1

in
2n + 1

2

[
1

n(n + 1)
J⃗
(p)
1n (ρ⃗1) + J⃗

(p)
−1n (ρ⃗1)

]
,

u⃗(p+1)
inc (r⃗; r⃗1) = a(p)eikpz1

+∞∑
n=1

in
2n + 1

2

[
1

n(n + 1)
J⃗
(p+1)
1n (ρ⃗1) − J⃗

(p+1)
−1n (ρ⃗1)

]
, (8b)

with zj the z component of vector r⃗j. The displacement fields are expressed as infinite series of vector spherical harmonics,

⟨u⃗(p)
E (r⃗, r⃗j)⟩ =

∑
n,m

A(p)
mn(r⃗j) J⃗

(p)
mn(ρ⃗j) with ρ⃗j ≡ r⃗ − r⃗j, (9)

and, as there cannot be any monopolar rotational mode,

A(p)
m0(r⃗j) = 0 if p /∈ L. (10)

The action of the scattering operators T (qp)(r⃗j) on a spherical harmonic is defined as

T (qp)(r⃗j) J⃗
(q)
mn(ρ⃗j) = T qp

n H⃗
(p)
nm(ρ⃗j), with, after Eq. (10), (11a)

T qp
0 = 0 if (q, p) /∈ L2, (11b)

and, as ‘‘t’’ waves are uncoupled from the others [46],

T qu
n = T uq

n = 0 if u ∈ T while q /∈ T . (12)

Eq. (5) can now be expressed with spherical harmonics, using Eqs. (9) and (11), as follows :∑
n,m

A(p)
mn(r⃗1 )⃗J

(p)
mn(ρ⃗1) =

u⃗(p)
inc(r⃗; r⃗1) +

P∑
q=1

P∑
u=1

δkukp

∑
ν,µ

∫
d r⃗j n(r⃗j, r⃗1)A(q)

µν(r⃗j)T
qu
ν G(up) (r⃗j, r⃗1) H⃗(u)

νµ(ρ⃗j). (13)
4
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T
he action of operator G(up) (r⃗j, r⃗1), that results from the addition theorem, is defined as follows

G(up) (r⃗j, r⃗1) H⃗(u)
νµ(ρ⃗j) =

∑
n,m

∑
ℓ

Gup (n,m, ℓ; ν, µ) ei(µ−m)φ(r⃗1j)Pµ−m
ℓ

(
cos θ (r⃗1j)

)
h(1)

ℓ

(
kpr1j

)
J⃗
(p)
mn (ρ⃗1) , (14)

with r⃗1j = r⃗1 − r⃗j.
The Gup (n,m, ℓ; ν, µ) coefficients depend on the types of waves involved (longitudinal, ‘‘s’’ or ‘‘t’’), and this is the

reason why their up subscripts are identical to the superscripts in parentheses of the corresponding operator ; their
expressions as well as a few of their properties are given in Appendix A. The values taken by ℓ in the sum over it depend
on u, p, n,m, ν, µ, and [51,52] obey

ℓ ≡ n + ν (mod 2) if u = p, and ℓ ≡ n + ν + 1 (mod 2) else. (15)

Use of Eqs. (9) and (14)–(A.7) leads to∑
n,m

A(p)
mn(r⃗1 )⃗J

(p)
mn(ρ⃗1) − u⃗(p)

inc(r⃗; r⃗1)

=

∑
n,m

P∑
q=1

P∑
u=1

δkukp

∑
ν,µ

∑
ℓ

T qu
ν Gup (n,m, ℓ; ν, µ) J⃗

(p)
mn(ρ⃗1)∫

d r⃗j n(r⃗j, r⃗1)A(q)
µν(r⃗j)e

i(µ−m)φ(r⃗1j)Pµ−m
ℓ

(
cos θ (r⃗1j)

)
h(1)

ℓ

(
kpr1j

)
. (16)

3.2. The coherent plane waves

The incident plane wave impinges the z = 0 interface at normal incidence and we expect the coherent waves of Eq. (9)
they give rise to to be plane waves propagating and attenuated in the same direction z. The solutions of Eq. (16) are thus
searched in the form [45]

A(q)
µν(r⃗j) =

∑
s=1

Ãqs
µνe

iξszj , (17)

so that any coherent wave of wavenumber ξs may arise from the combination of all possible types of waves in the host
matrix. The summation over s extends a priori from 1 to infinity [25,26,53] ; as pointed out in Ref. [45], this summation
is necessary for the coherent waves amplitudes not to be all equal to zero, but it is not mandatory when looking for the
dispersion equation. More precisely, it is shown in Ref. [26] that a large number of coherent plane waves is required to
calculate accurately the field in the vicinity of the interface between the host medium and the heterogeneous one, but
that only one or two of them dominate away from that interface, at least in case of a fluid host matrix, as the others
attenuate much more rapidly.

Noticing that the integration over r⃗j imposes µ = m,∫
d r⃗j n(r⃗j, r⃗1)A(q)

µν(r⃗j)e
i(µ−m)φ(r⃗1j)Pµ−m

ℓ

(
cos θ (r⃗1j)

)
h(1)

ℓ

(
kpr1j

)
= (−1)ℓδm,µ

∑
s

I (p)ℓ (ξs) Ãqs
mν, (18)

with

I (p)ℓ (ξ) =

∫
d r⃗j n(r⃗j, r⃗1)eiξzjPℓ

(
cos θ (r⃗j1)

)
h(1)

ℓ

(
kprj1

)
, (19)

Eq. (16) turns to∑
s

∑
n,m

Ãps
mne

iξsz1 J⃗
(p)
nm(ρ⃗1) − u⃗(p)

inc(r⃗; r⃗1)

=

∑
s

∑
n,m

P∑
q=1

P∑
u=1

δkukp

∑
ν,m

∑
ℓ

Ãqs
mνT

qu
ν (−1)ℓI (p)ℓ (ξs)Gup (n,m, ℓ; ν,m) J⃗

(p)
nm(ρ⃗1). (20)

In the following, we shall, for a while, separate Eq. (20) into three different equations, depending upon the local
polarization that p is related to, until we get the extinction theorem and compare it with those in Refs. [20,29] where a
smaller number of polarization types of waves were considered.

Owing to the orthogonality of the vector spherical harmonics of different orders and/or degrees, and keeping in mind
Eqs. (11b) and (A.1)–(A.7), this leads to

[ ]
∀p ∈ L, ∀n ∈ N, ∀m ∈ Z ∩ −n, n

5
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I

∑
s

Ãps
mne

iξsz1 − δ0meikpz1a(p)in(2n + 1) =

∑
s

∑
q

+∞∑
ν=0

∑
ℓ

Ãqs
mνT

qp
ν (−1)ℓI (p)ℓ (ξs)GLL (n,m, ℓ; ν,m) , (21a)

∀p ∈ S, ∀n ∈ N, ∀m ∈ Z ∩ [−n, n]∑
s

Ãps
mne

iξsz1 − (1 − δ0n) in
2n + 1

2

[
δ−1m +

1
n(n + 1)

δ1m

]
eikpz1a(p) =

∑
s

∑
q

+∞∑
ν=1

∑
ℓ

Ãqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp+1

ν GST (n,m, ℓ; ν,m)
]
(−1)ℓI (p)ℓ (ξs), (21b)

∀p ∈ T , ∀n ∈ N, ∀m ∈ Z ∩ [−n, n]∑
s

Ãps
mne

iξsz1 − (1 − δ0n) in
2n + 1

2

[
δ−1m +

1
n(n + 1)

δ1m

]
eikpz1a(p) =

∑
s

∑
q

+∞∑
ν=1

∑
ℓ

Ãqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp−1

ν GST (n,m, ℓ; ν,m)
]
(−1)ℓI (p)ℓ (ξs). (21c)

After Refs. [17,20,29,30], taking into account Eq. (6) provides

I (p)ℓ (ξ ) =
2n0π iℓ

ξ − kp

[
2b

ξ + kp
Ñ (p)

ℓ (ξ )eiξz1 +
i
k2p

eikpz1
]
with (22a)

Ñ (p)
ℓ (ξ ) = N (p)

ℓ (ξ ) +
ξ 2

− k2p
k3pb

L(p)ℓ (ξ ) (22b)

N (p)
ℓ (ξ ) = ξbj′ℓ(ξb)h

(1)
ℓ (kpb) − kpbjℓ(ξkb)h

(1)′
ℓ (kpb), (22c)

L(p)ℓ (ξ ) =

∫
∞

b
jℓ (ξ r) h(1)

ℓ

(
kpr

)
U (r, n0) k3pr

2dr. (22d)

nserting Eqs. (22) into Eqs. (21) leads to

∀p ∈ L, ∀n ∈ N, ∀m ∈ Z ∩ [−n, n]∑
s

Ãps
mne

iξsz1 − δ0min(2n + 1)eikpz1a(p) =

∑
s

4n0πb
ξ 2
s − k2p

P∑
q=1

+∞∑
ν=0

∑
ℓ

iℓÃqs
mνT

qp
ν (−1)ℓÑ (p)

ℓ (ξs)GLL (n,m, ℓ; ν,m) eiξsz1+

∑
s

2n0π(
ξs − kp

)
k2p

P∑
q=1

+∞∑
ν=0

∑
ℓ

(−1)ℓiℓ+1Ãqs
mνT

qp
ν GLL (n,m, ℓ; ν,m) eikpz1 , (23a)

∀p ∈ S, ∀n ∈ N, ∀m ∈ Z ∩ [−n, n]∑
s

Ãps
mne

iξsz1 − (1 − δ0n) in
2n + 1

2

[
δ−1m +

1
n(n + 1)

δ1m

]
eikpz1a(p) =

∑
s

4n0πb
ξ 2
s − k2p

P∑
q=1

+∞∑
ν=1

∑
ℓ

iℓÃqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp+1

ν GST (n,m, ℓ; ν,m)
]
(−1)ℓÑ (p)

ℓ (ξs)eiξsz1+∑
s

2n0π(
ξs − kp

)
k2p

P∑
q=1

+∞∑
ν=1

∑
ℓ

(−1)ℓiℓ+1Ãqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp+1

ν GST (n,m, ℓ; ν,m)
]
eikpz1 , (23b)

∀p ∈ T , ∀n ∈ N, ∀m ∈ Z ∩ [−n, n]
6
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a

∑
s

Ãps
mne

iξsz1 − (1 − δ0n) in
2n + 1

2

[
−δ−1m +

1
n(n + 1)

δ1m

]
eikpz1a(p) =

∑
s

4n0πb
ξ 2
s − k2p

P∑
q=1

+∞∑
ν=1

∑
ℓ

iℓÃqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp−1

ν GST (n,m, ℓ; ν,m)
]
(−1)ℓÑ (p)

ℓ (ξs)eiξsz1+∑
s

2n0π(
ξs − kp

)
k2p

P∑
q=1

+∞∑
ν=1

∑
ℓ

(−1)ℓiℓ+1Ãqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp−1

ν GST (n,m, ℓ; ν,m)
]
eikpz1 . (23c)

Obviously, if m ̸= 0, −1, 1, all Ãps
mn are zero, and, introducing

γ
(m)
0 = η

(m)
0 = 1 (24a)

γ (m)
n =

⎧⎪⎨⎪⎩
1

in(2n + 1)
if m = 0

2n(n + 1)
in(2n + 1)

else,
(24b)

η(m)
n =

{
i−n if m = 0
i−nn(n + 1) else,

(24c)

nd using Eqs. (10), (A.4), (A.7) and Eqs. (A.11), (A.12), (A.13), (A.16) of Appendix A, Eqs. (23) reduce to

∀p ∈ L, ∀n ∈ N, ∀m ∈ [0, 1] ,∑
s

Ãps
mne

iξsz1 −
δ0m

γ
(m)
n

eikpz1a(p) =

∑
s

4n0πb
ξ 2
s − k2p

P∑
q=1

+∞∑
ν=0

∑
ℓ

iℓÃqs
mνT

qp
ν (−1)ℓÑ (p)

ℓ (ξs)GLL (n,m, ℓ; ν,m) eiξsz1+

∑
s

2n0π(
ξs − kp

)
k2p

P∑
q=1

+∞∑
ν=0

iδ0m
η(m)

ν

γ
(m)
n

Ãqs
mνT

qp
ν eikpz1 , (25a)

∀p ∈ S, ∀n ∈ N∗, ∀m ∈ [0, 1] ,∑
s

Ãps
mne

iξsz1 −
δ1m

γ
(m)
n

eikpz1a(p) =

∑
s

4n0πb
ξ 2
s − k2p

P∑
q=1

+∞∑
ν=1

∑
ℓ

iℓÃqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp+1

ν GST (n,m, ℓ; ν,m)
]
(−1)ℓÑ (p)

ℓ (ξs)eiξsz1+∑
s

2n0π(
ξs − kp

)
k2p

P∑
q=1

+∞∑
ν=1

i
η(m)

ν

γ
(m)
n

Ãqs
mνδ1m

(
T qp
ν + T qp+1

ν

)
eikpz1 , (25b)

∀p ∈ T , ∀n ∈ N∗, ∀m ∈ [0, 1] ,∑
s

Ãps
mne

iξsz1 −
δ1m

γ
(m)
n

eikpz1a(p) =

∑
s

4n0πb
ξ 2
s − k2p

P∑
q=1

+∞∑
ν=1

∑
ℓ

iℓÃqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp−1

ν GST (n,m, ℓ; ν,m)
]
(−1)ℓÑ (p)

ℓ (ξs)eiξsz1+∑
s

2n0π(
ξs − kp

)
k2p

P∑
q=1

+∞∑
ν=1

i
η(m)

ν

γ
(m)
n

Ãqs
mνδ1m

(
T qp
ν + T qp−1

ν

)
eikpz1 . (25c)
7
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nd, due to Eq. (A.11),

Ãps
−1n = ±

(n + 1)!
(n − 1)!

Ãps
1n, (26)

ith the minus sign when p ∈ T .
Because of Eq. (A.12) and as there is no coupling, through scattering, of ‘‘t’’ waves with either longitudinal or ‘‘s’’ waves,

the coefficients of all Ãqs
0n (m = 0) in Eqs. (25a) and (25b) are zero when q ∈ T , and, for the same reasons, Eq. (25c) is a

omogeneous linear system involving only p and q both in T . When m = 0, thus, the Ãps
0n are all zero when p is in T , and

‘‘t’’ waves do not concur to the multiple scattering process in case of a longitudinal incident plane wave. The remaining
Ãps
0n unknowns obey Eqs. (25a) and (25b).
When m = 1, the incident plane wave is rotational, and, as Eq. (A.12) is no longer relevant, Eqs. (25) form one unique

linear system that couples all the unknowns, and all types of waves participate to the multiple scattering process.

4. Extinction theorem and Lorentz–Lorenz law

The extinction theorem consists in balancing the coefficients of eikpz1 in Eqs. (25). It provides

∀p ∈ L,

i
∑
s

2n0π(
ξs − kp

)
k2p

P∑
q=1

+∞∑
ν=0

η(0)
ν Ãqs

0νT
qp
ν = −a(p), (27a)

hich is the extension of Eqs. (2.12-133) in Ref. [20] that takes into account the possibility of rotational waves to propagate
n the matrix, and

∀p ∈ S,

i
∑
s

2n0π(
ξs − kp

)
k2p

P∑
q=1

+∞∑
ν=1

h(1)
ν Ãqs

1ν

(
T qp
ν + T qp+1

ν

)
= −a(p), (28a)

∀p ∈ T ,

i
∑
s

2n0π(
ξs − kp

)
k2p

P∑
q=1

+∞∑
ν=1

h(1)
ν Ãqs

1ν

(
T qp
ν + T qp−1

ν

)
= −a(p), (28b)

which are the extension of Eqs. (32,33) in Ref. [29] that takes into account the longitudinal waves. As a(p) is the same for
p ∈ S as for p ∈ T , one can check that Eqs. (28) reduce to a single equation as in the electromagnetic case (Eq. (46) in
Ref. [29]).

The Lorentz–Lorenz law consists in balancing the terms of eiξsz1 ; there is one set of equations for m = 0, and a different
one for m = 1, but both share the same general form,

∀p ∈ L, ∀n ∈ N, ∀m ∈ [0, 1] ,

Ãps
mn =

4n0πb
ξ 2
s − k2p

P∑
q=1

+∞∑
ν=0

∑
ℓ

iℓÃqs
mνT

qp
ν (−1)ℓÑ (p)

ℓ (ξs)GLL (n,m, ℓ; ν,m) , (29a)

∀p ∈ S, ∀n ∈ N∗, ∀m ∈ [0, 1] ,

Ãps
mn =

4n0πb
ξ 2
s − k2p

P∑
q=1

+∞∑
ν=1

∑
ℓ

iℓÃqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp+1

ν GST (n,m, ℓ; ν,m)
]
(−1)ℓÑ (p)

ℓ (ξs), (29b)

∀p ∈ T , ∀n ∈ N∗, ∀m ∈ [0, 1] ,

Ãps
mn =

4n0πb
ξ 2
s − k2p

P∑
q=1

+∞∑
ν=1

∑
ℓ

iℓÃqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp−1

ν GST (n,m, ℓ; ν,m)
]
(−1)ℓÑ (p)

ℓ (ξs). (29c)

etting to zero the determinant of the Lorentz–Lorenz law provides the dispersion equation the effective wavenumbers ξs
ust obey ; there is one dispersion equation for m = 0, and another one for m = ±1, and we should discuss that before
roceeding any further.
8
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The displacement field of a coherent wave propagating with a given effective wavenumber ξs, solution of the dispersion
equation for m = 0, will be the summation of displacements of amplitudes Ãps

0n, p ∈ L ∪ S. These displacements, in a
given spherical coordinate system, will be linear combinations of spherical harmonics of order m = 0 (see Eqs. (9) and
(17)), as is the case of a longitudinal plane wave (see Eq. (8a)) ; the coherent wave, which, in case of low concentration,
should be close to a longitudinal wave, will be referred to, in the following, as a ‘‘quasi-longitudinal’’ coherent wave. If
ξs is a solution of the dispersion equation for m = 1, the displacements, of amplitudes Ãps

±1n, p ∈ L ∪ S ∪ T , will be
combinations of spherical harmonics of orders m = ±1, as is the case for a rotational wave (see Eq. (8b)). The coherent
wave will be referred to as a ‘‘quasi-rotational’’ wave.

Solving anyone of those two dispersion equations consists in looking for the roots of an implicit equation in ξs, which
is possible only numerically, and, as discussed in Refs. [25,26], while the number of solutions in each case is infinite, most
of them correspond to highly attenuated waves. Moreover, provided a not too large concentration of scatterers, and/or
not too much scattering from each, one expects coherent waves to propagate with wavenumbers close to those of the
waves existing in the absence of scatterers. Approximations of those particular solutions of the dispersion equations are
looked for in next section.

5. Matrix form of the Lorentz–Lorenz law : dispersion equations of the coherent waves

The aim of this section is to write Eqs. (29) in a matrix formmore suitable to get approximate solutions of the dispersion
equations, as in Refs. [31,45]. The quasi-longitudinal waves dispersion equation and the quasi-rotational one may be
treated the same way until we get that matrix form, and, even though the elements of the matrices we shall introduce
depend on the value (0 or 1) of m, we shall not write explicitly that they do, in order to have notations as light as possible.
For this very same reason, we shall drop the index s all over and introduce new unknowns, B̃p

n, that will correspond, for
a given value of m and a given one of s, to Ãps

mn. Keeping in mind that there are no ‘‘s’’ or ‘‘t’’ monopolar modes, i.e. n ∈ N
if p ∈ L and n ∈ N∗ else, and turning back to the

∑
u δkukp notations instead of expanding those sums so that the matrix

form will be easier to get, we start with

B̃p
n −

4n0πb
ξ 2 − k2p

P∑
u=1

δkukp

+∞∑
ν=0

∑
ℓ

Ñ (p)
ℓ (ξ )(−i)ℓGup (n,m, ℓ; ν,m)

P∑
q=1

B̃q
νT

qu
ν = 0, (30)

nd introduce the H(pu)(ξ ) and J(pu)(ξ ) matrices from their (m-depending) elements,

Hpu
nν(ξ ) =

∑
ℓ

ikpbN
(p)
ℓ (ξ )(−i)ℓGup (n,m, ℓ; ν,m)

γ
(m)
n

η
(m)
ν

, (31a)

Jpunν(ξ ) =

∑
ℓ

(kpb)−2L(p)ℓ (ξ )(−i)ℓGup (n,m, ℓ; ν,m)
γ

(m)
n

η
(m)
ν

. (31b)

ith γ
(m)
n B̃p

n denoted as Bp
n, Eq. (30) turns to

Bp
n − 4n0πb3

P∑
u=1

δkukp

+∞∑
ν=0

1
ikpb(ξ 2 − k2p)b2

[
Hpu

nν(ξ ) + i(ξ 2
− k2p)b

2Jpunν(ξ )
] P∑

q=1

Bq
νt

(uq)
nν = 0, (32)

ith matrix t(uq) entries given by

t(uq)nν = δνn
ην

γν

T qu
ν . (33)

hen multiple scattering is low, either because each single sphere does not scatter much the incident plane wave, or
ecause there are very few of them, we expect each coherent quasi-longitudinal (resp. quasi-rotational) plane wave
o be practically the same as one of the longitudinal (resp. rotational) plane wave in the pure matrix. Letting σinc be
he scattering cross section associated to the incident plane wave of the spheres normalized by their geometric section
a2, multiple scattering should be proportional somehow to σinc times the concentration c of spheres. For a longitudinal
ncident wave, σinc =

∑P
q=1 σincq with σincq given by [54]⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σincq =
4

(kinca)(kqa)

∞∑
n=0

(2n + 1)
⏐⏐T incq

n

⏐⏐2 if q ∈ L,

σincq =
4

(kinca)(kqa)

∞∑
n=1

n(n + 1)(2n + 1)
⏐⏐T incq

n

⏐⏐2 if q ∈ S,
(34)
σincq = 0 else,

9
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nd, for a rotational incident wave whose shear part corresponds to index p, σinc =
∑P

q=1

(
σpq + σp+1q

)
with σpq, σp+1q

given by [54]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σpq =
2

(kpa)(kqa)

∞∑
n=1

2n + 1
n(n + 1)

⏐⏐T pq
n

⏐⏐2 if q ∈ L,

σpq =
2

(kpa)(kqa)

∞∑
n=1

(2n + 1)
⏐⏐T pq

n

⏐⏐2 if q ∈ S,

σp+1q =
2

(kpa)(kqa)

∞∑
n=1

(2n + 1)
⏐⏐T p+1q

n

⏐⏐2 if q ∈ T ,

σp+1q = 0 if q /∈ T .

(35)

We define block matrix T, whose Tuq entry, line u column q, is the t(uq) matrix divided by σinc, along with

yp =
(
ξ 2

− k2p
)
b2, ϵ = 4n0σincb3 =

3
π

σinc
b3

a3
c, (36)

o that small values of ϵ correspond to small concentration × scattering cross section products and ξ close to the
wavenumber of the incident longitudinal or rotational plane wave. It is the approximation formulas of those particular
values of ξ at small ϵ that, at the end, we are looking for.

Now we define the infinite vectors |B(p)
⟩ and |e⟩, of respective components Bp

n and en = 1, along with the infinite
atrix Q̄(pu)(ξ ),

Q̄pu
nν(ξ ) =

π

ikpbyp

[
Hpu

nν(ξ ) + iypJpunν(ξ ) − 1
]
δkukp , (37)

nd get⏐⏐B(p)⟩
− ϵ

P∑
u=1

(
Q̄(pu)(ξ ) +

π

ikpbyp
δkukp |e⟩ ⟨e|

) P∑
q=1

Tuq
⏐⏐B(q)⟩

= |0⟩ , (38)

r ⎡⎣I − ϵ

⎛⎝Q̄(ξ ) +

P∑
p=1

⏐⏐g (p)
⟩ ⟨
e(p)

⏐⏐
yp

⎞⎠T

⎤⎦ |B⟩ = |0⟩ , (39)

ith the ‘‘block vectors’’ and block matrices defined from their entries,

(|B⟩)q = |B(q)
⟩,

(
|g (p)

⟩
)
q = δpq

√
π (ikpb)−1/2

|e⟩,
(⟨
e(p)

⏐⏐)
q = δkqkp

√
π (ikpb)−1/2

⟨e| (40a)

(I)pq = δpq |e⟩ ⟨e| ,
(
Q̄(ξ )

)
pq = Q̄(pq)(ξ ). (40b)

Now we can follow exactly Ref. [31], which followed merely the same procedure as Ref. [45] for its matrix formulation
part; defining

|h(p)
⟩ = T1/2

|g (p)
⟩, ⟨f (p)| = ⟨e(p)|T1/2, |b⟩ = T1/2

|B⟩, (41a)

Q(ξ ) = T1/2Q̄(ξ )T1/2, (41b)

and multiplying by T1/2 on the left, we obtain⎡⎣I − ϵ

⎛⎝Q(ξ ) +

P∑
p=1

|h(p)
⟩⟨f (p)|
yp

⎞⎠⎤⎦ |b⟩ = |0⟩, (42)

he physical solutions ξ of which being the solutions of⎡⎣I − ϵ (I − ϵQ(ξ ))−1
P∑

p=1

|h(p)
⟩⟨f (p)|
yp

⎤⎦ |b⟩ = |0⟩. (43)

aking the inner product of Eq. (43) with ⟨f (p)| yields

(1 − ϵ
Mpp(ξ )

yp
)⟨f (p)|b⟩ − ϵ

P∑
q=1

Mpq(ξ )
yq

⟨f (q)|b⟩ = 0, (44)
q̸=p

10
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ith

∀p ∈ [1, P] ,

Mpq(ξ ) = ⟨f (p)| (I − ϵQ(ξ ))−1
|h(q)

⟩ = ⟨ep|M−1T|gq
⟩. (45)

and

M =
[
I − ϵTQ̄(ξ )

]−1
= I + ϵTQ̄(ξ ) + ϵ2 [

TQ̄(ξ )
]2

+ · · · (46)

Eq. (44) is a homogeneous linear system of rank P = L+2R, whose determinant provides, when set to zero, the dispersion
equation of the coherent waves. It is the generalization of Eqs. (48,49) obtained by Tsang et Kong [29] in electromagnetism.

6. The asymptotic effective wavenumbers at low concentration × scattering cross section product

At low ϵ, we expect each of the effective wavenumbers to be close to one kp, so that we shall look for the asymptotic
expansion in ϵ of each yp for a given p,

yp = ϵy(1)p + ϵ2y(2)p + · · · (47)

It follows, from Eqs. (36), (45) and (46), that asymptotic expansions can also be done for the Q̄(ξ ) matrix, and hence for
Mpq(ξ ),

Q̄(ξ ) = Q̄(kp) + ϵQ̄(1)
+ ϵ2Q̄(2)

+ · · · , Mpq(ξ ) = M (0)
pq + ϵM (1)

pq + ϵ2M (2)
pq + · · · . (48)

Inserting Eqs. (47) and (48) into the determinant of Eq. (44), letting yq be equal to yp + (kpb)2 − (kqb)2 for all q ̸= p
and considering only the first two terms of the asymptotic expansion of the effective wavenumbers ξ will provide
approximations of those close to kp at low concentration × scattering product.

We must study now separately the dispersion equation of the quasi-longitudinal coherent waves (m = 0) and that of
the quasi-rotational waves (m = 1).

6.1. The effective wavenumbers of the quasi-longitudinal coherent waves

As noticed in the previous section, (locally) ‘‘t’’ waves do not participate to the multiple scattering process because of
Eqs. (12) and (A.12), so that p is in [1, L + R] rather than [1, L + 2R], the size of the homogeneous linear system Eq. (44),
is (L + R) × (L + R), and δkukp = δup. The dispersion equation takes a form similar to Eq. (27) in Ref. [31], and, taking into
account the b2 coefficient in the definition of ϵ in Eq. (36), as compared to that in Ref. [31], Eqs. (30) in the latter turn to

y(1)p = M (0)
pp , y(2)p = M (1)

pp +

∑
q̸=p

M (0)
pq M

(0)
qp

(k2p − k2q)b2
, (49)

priori whatever the value of the (L, R) couple. The expressions of the M (0)
pp , M (1)

pp in terms of the scattering coefficients,
are given in Eqs. (B.6) and (B.7), and are to be compared to Eqs. (31) of Ref. [31].

Using Eqs. (B.1) and (B.3) and noticing that, contrary to what was the case in Ref. [32], the effect of correlation may
be seen in Q̄(kp) = Q̄(ϵ = 0), as the ϵ defined in Eq. (36) can be 0 while the concentration is not, one gets the asymptotic
expansion of the ξ 2/k2p ratio, up to order 2 in the concentration × scattering product,

∀p ∈ L,

ξ 2

k2p
= 1 − 3ic

δ1

(kpa)3
− 9i

c2

(kpa)3

⎡⎣ b
2a

δ
(p)
2

(kpa)2
+

b
a

∑
q̸=p

δ
(pq)
2

(k2p − k2q)a2
+

∑
q

δ
(pq)
2corr

(kqa)3

⎤⎦ (50)

ith, after Eqs. (B.4)–(B.7), (A.1),

δ1 =

∑
n

(2n + 1)T pp
n (51a)

δ
(p)
2 =

∑
n

∑
ν

iν−n(2ν + 1)T pp
ν

∑
ℓ

(−i)ℓGLL(n, 0, ℓ; ν, 0)nℓ(kpb)T pp
n (51b)

δ
(pq)
2 =

∑
n

∑
ν

iν−n(2ν + 1)T pq
ν

∑
ℓ

(−i)ℓGqq(n, 0, ℓ; ν, 0)N (q)
ℓ (kp)T qp

n (51c)

δ
(pq)
2corr =

∑
n

∑
ν

iν−n(2ν + 1)T pq
ν

∑
ℓ

(−i)ℓGqq(n, 0, ℓ; ν, 0)L(q)ℓ (kp)T qp
n . (51d)

he difference between the effective wavenumbers obtained from Eqs. (50) and (51a) and those from Ref. [31] will be
tudied in the case of elastic spheres in an elastic matrix in the numerical section.
11
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.2. The effective wavenumbers of the quasi-rotational coherent waves

The determinant to be set to zero is now of order L + 2R because of transverse waves, yp+1 = yp and, after Eqs. (45)
nd (B.1),

∀p ∈ S, Mp+1q = Mpq, ∀(p, q) ∈ L × T , M (0)
pq = 0. (52)

e look for effective wavenumbers close to a shear wavenumber of the matrix, e.g. for p ∈ S and get

y(1)p = M (0)
pp + M (0)

pp+1, y(2)p = M (1)
pp + M (1)

pp+1 +

∑
q∈L

M (0)
pq M

(0)
qp

(k2p − k2q)b2
+

∑
q∈S,
q̸=p

[
M (0)

pq + M (0)
pq+1

] [
M (0)

qp + M (0)
qp+1

]
(k2p − k2q)b2

, (53)

nd, after Eqs. (12), (B.10)–(B.13), (A.1)–(A.7),

∀p ∈ S,

ξ 2

k2p
= 1 −

3
2
ic

δ1

(kpa)3
−

9i
2

c2

(kpa)3
×⎡⎢⎢⎣ b

2a
δ
(p)
2

(kpa)2
+

b
a

∑
q∈L

δ
(pq)
2L

(k2p − k2q)a2
+

b
a

∑
q∈S
q̸=p

δ
(pq)
2S

(k2p − k2q)a2
+

∑
q∈L

δ
(pq)
2corrL

(kqa)3
+

∑
q∈S

δ
(pq)
2corrS

(kqa)3

⎤⎥⎥⎦ , (54)

with

δ1 =

∑
n∗

(2n + 1)
[
T pp
n + T p+1p+1

n

]
(55a)

δ
(p)
2 =

∑
n∗

∑
ν∗

iν−n(2ν + 1)
n(n + 1)
ν(ν + 1)

×⎧⎨⎩
[
T pp
ν T pp

n + T p+1p+1
ν T p+1p+1

n

]∑
ℓ(−i)ℓGSS(n, 1, ℓ; ν, 1)nℓ(kpb)

+

[
T p+1p+1
ν T pp

n + T pp
ν T p+1p+1

n

]∑
ℓ(−i)ℓGST (n, 1, ℓ; ν, 1)nℓ(kpb)

⎫⎬⎭ (55b)

δ
(pq)
2L =

∑
n∗

∑
ν∗

iν−n(2ν + 1)
n(n + 1)
ν(ν + 1)

T pq
ν

∑
ℓ

(−i)ℓGLL(n, 1, ℓ; ν, 1)N (q)
ℓ (kp)T qp

n (55c)

δ
(pq)
2S =

∑
n∗

∑
ν∗

iν−n(2ν + 1)
n(n + 1)
ν(ν + 1)

×⎧⎨⎩
[
T pq
ν T qp

n + T p+1q+1
ν T q+1p+1

n

]∑
ℓ(−i)ℓGSS(n, 1, ℓ; ν, 1)N (q)

ℓ (kp)

+

[
T pq
ν T q+1p+1

n + T p+1q+1
ν T qp

n

]∑
ℓ(−i)ℓGST (n, 1, ℓ; ν, 1)N (q)

ℓ (kp)

⎫⎬⎭ (55d)

δ
(pq)
2corrL =

∑
n∗

∑
ν∗

iν−n(2ν + 1)
n(n + 1)
ν(ν + 1)

T pq
ν

∑
ℓ

(−i)ℓGLL(n, 1, ℓ; ν, 1)L(q)ℓ (kp)T qp
n (55e)

δ
(pq)
2corrS =

∑
n∗

∑
ν∗

iν−n(2ν + 1)
n(n + 1)
ν(ν + 1)

×⎧⎨⎩
[
T pq
ν T qp

n + T p+1q+1
ν T q+1p+1

n

]∑
ℓ(−i)ℓGSS(n, 1, ℓ; ν, 1)L(q)ℓ (kp)

+

[
T p+1q+1
ν T qp

n + T pq
ν T q+1p+1

n

]∑
ℓ(−i)ℓGST (n, 1, ℓ; ν, 1)L(q)ℓ (kp)

⎫⎬⎭ . (55f)

. Elastic spheres in an elastic matrix : Numerics

In the following, we consider elastic spheres in an elastic matrix, so that one longitudinal (L = 1) and one rotational
ave (R = 1) may propagate in the matrix, with respective wavenumbers k1 = kL, k2 = k3 = kS . In the following, indexes
will refer to longitudinal waves, while S and T will refer to ‘‘s’’ and ‘‘t’’ waves respectively. We suppose the Ursell function
qual to 0, thus neglecting any pair correlation effect other than those of the hole correction, as we will be interested
nly in the effect of the (questionable) assumption of azimuthal invariance that was done in Ref. [31] when dealing with
uasi-longitudinal waves, or of introducing longitudinal waves in Refs. [29,30] when dealing with quasi-rotational waves.
he summations over n, ν in the Lorentz–Lorenz law, Eqs. (29), may be truncated to some finite integer N that depends
12
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Fig. 1. Tungsten carbide sphere in an epoxy resin : scattering cross sections σIM for an incident wave of type I and a scattered wave of type M .

pon the frequency through the kLa, kSa products, while the number of unknowns depends upon the incident plane wave
m = 0 or m = 1), i.e. whether quasi-longitudinal waves or quasi-rotational ones are looked upon.

All figures correspond to an epoxy matrix and tungsten carbide spheres of radius a = 198.5 µm whose properties
re given in Ref. [38], and the numerical calculations for b = 2a are compared to previous experimental results [38,55],
n which the longitudinal wave measurements were made in transmission at normal incidence in a water tank using a
air of immersion transducers with center frequency f = 1 MHz. The shear wave measurements were performed also in
ransmission at normal incidence using a contact measurement device. This device consisted of two blocks of aluminum
lloy used as delay lines, on which shear wave transducers with center frequency f = 1 MHz were glued with controlled
lamping. Each sample was inserted between the two delay lines and the coupling at the two interfaces was made by a
hear wave couplant of controlled thickness [56,57].
Such a system exhibits two strong dipolar resonances, associated to translation and rotation movements [55,58] at

requencies respectively around 530 kHz and 920 kHz. In order to observe the influence of such resonances on the
cattering by a single particle, the normalized scattering cross-sections [54] σIM for an incident wave of nature I and
scattered wave of nature M are plotted versus frequency in Fig. 1. The scattering cross section σinc of the incident wave

s equal [54] to σLL +σLS in case of an incident longitudinal wave, and to σSL +σSS +σTT if the incident wave is rotational.
he scattering cross sections σLL, σLS , σSL, and σSS exhibit a peak at the vicinity of the translation dipolar resonance of the
ead, whereas σTT exhibits one in the vicinity of the rotation dipolar resonance. The translation resonance therefore affects
oth longitudinal and ‘‘s’’ waves, while the rotation resonance influences only the ‘‘t’’ waves. Moreover, for an incident
ongitudinal wave, the scattering cross section σLS is stronger than σLL, implying that the wave conversion is important,
specially at the translation resonance. On the contrary, for an incident rotational wave, the scattering cross section σSL
s weaker than σSS , implying that the wave conversion is weak in that case.

.1. The quasi-longitudinal coherent waves

When looking for the quasi-longitudinal coherent waves, m is set to 0 in Eqs. (29), and, letting A(L)
ν denote Ã1s

0ν and
(S)
ν denote Ã2s

0ν , remembering that A(S)
0 = 0, the dispersion equation is obtained by setting to zero the determinant of the

ollowing system of (2N + 1) equations of 2N + 1 unknowns (A(L)
0 , . . . , A(L)

N , A(S)
1 ...A(S)

N ),

∀n ∈ [0,N] ,

A(L)
n =

4n0πb
ξ 2 − k2L

N∑
ν=0

∑
ℓ

(−i)ℓÑ (L)
ℓ (ξ )

[
A(L)

ν T LL
ν + A(S)

ν T SL
ν

]
GLL (n, 0, ℓ; ν, 0) , (56a)

∀n ∈ [1,N] ,

A(S)
n =

4n0πb
ξ 2 − k2S

N∑
ν=1

∑
ℓ

(−i)ℓÑ (S)
ℓ (ξ )

[
A(L)

ν T LS
ν + A(S)

ν T SS
ν

]
GSS (n, 0, ℓ; ν, 0) . (56b)

t low concentration × scattering and under the hole correction assumption, the solution of Eq. (56) that is close to kL
an be approximated, using Eq. (50), by

ξ 2

2 = 1 − 3ic
δ1

(k a)3
− 9i

b
a

c2

(k a)3

[
δ
(L)
2

2(k a)2
+

δ
(LS)
2

2 2 2

]
(57)
kL L L L (kL − kS )a

13
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Fig. 2. Concentration c = 5% of tungsten carbide spheres in an epoxy matrix. (a) Phase velocity and (b) attenuation of the quasi-longitudinal coherent
ave. Green line with squares: experiment from Ref. [55], black dotted line: from Eq. (36) of Ref. [31], blue solid line: from Eq. (57), dashed red

ine: from Eq. (56). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ith, after Eqs. (51a),

δ1 =

N∑
n=0

(2n + 1)T LL
n (58a)

δ
(L)
2 =

N∑
n=0

N∑
ν=0

iν−n(2ν + 1)T LL
ν

∑
ℓ

(−i)ℓGLL(n, 0, ℓ; ν, 0)nℓ(kLb)T LL
n (58b)

δ
(LS)
2 =

N∑
n=1

N∑
ν=1

iν−n(2ν + 1)T LS
ν

∑
ℓ

(−i)ℓGSS (n, 0, ℓ; ν, 0)N (S)
ℓ (kL)T SL

n . (58c)

he only difference between Eqs. (57) and (58) and Eqs. (36) of Ref. [31] where azimuthal invariance was assumed, comes
rom the δ

(LS)
2 term in Eq. (58). It involves the GSS (n, 0, ℓ; ν, 0) coefficient of the vector addition theorem, contrary to

q. (36) which involved only the GLL (n, 0, ℓ; ν, 0) coefficient of the scalar addition theorem. From a physical point of view,
he coupling between longitudinal and shear waves was different in Ref. [31] from here. The first two delta coefficients
n Eq. (58), associated to longitudinal waves only, are the same as in Ref. [31]. This suggests that the azimuthal invariance
ypothesis is acceptable only if the coupling between longitudinal and shear waves is weak, as far as a longitudinal
ncident wave is considered.

The effective phase velocity ceff =
2π f
Re[ξ ]

and attenuation αeff = Im[ξ ] of the quasi-longitudinal coherent wave are

plotted in Figs. 2(a) and (b) respectively, for a concentration c = 5% of beads. Experimental results (green solid lines with
squares) of Duranteau et al. [55] are compared to those obtained with Ref. [31] denoted LCN (black dotted curves) and
those derived from Eqs. (57) denoted LCVB (blue solid curves). The red dashed curves labeled ‘‘Num’’ have been obtained
by solving the dispersion equation that results from Eq. (56). For each frequency, this solution is obtained by searching
for the complex effective wave number by a dichotomy method, in the vicinity of the value given by the approximate
expression of Eq. (50). A convergence criterion is imposed during that search. The translation dipolar resonance of dense
beads induces on coherent quasi-longitudinal wave a large dispersion of the phase velocity and a strong attenuation peak
in the vicinity of 530 kHz, where the difference between the Num curve and the LCVB one is the largest, as σinc = σLL+σLS
and ϵ are larger in that region. The results of the modelings are quite comparable with Duranteau et al.’s [55] experimental
data, except the LCN at low frequency: taking into account the azimuth variation of the fields has little influence at higher
frequency.

7.2. The quasi-rotational coherent waves

When looking for the quasi-rotational coherent waves, m is set to 1 in Eqs. (29), and, letting A(L)
ν , A(S)

ν , and A(T )
ν denote

respectively Ã1s
1ν , Ã

2s
1ν , Ã

3s
1ν , remembering that A(S)

0 = A(T )
0 = 0, and that the summations over ℓ must obey Eq. (15), the

dispersion equation is obtained by setting to zero the determinant of the following system of (3N + 1) equations of
3N + 1 unknowns,

∀n ∈ [0,N] ,

A(L)
=
n

14



F. Luppé, J.-M. Conoir and T. Valier-Brasier Wave Motion 115 (2022) 103082

A
c

w

T
a
l

r
a
d
e
s
t
a
f
s
c

8

o

4n0πb
ξ 2 − k2L

P∑
q=1

N∑
ν=0

∑
ℓ

(−i)ℓ
[
A(L)

ν T LL
ν + A(S)

ν T SL
ν

]
Ñ (L)

ℓ (ξ )GLL (n, 1, ℓ; ν, 1) , (59a)

∀n ∈ [1,N] ,

A(S)
n =

4n0πb
ξ 2 − k2S

N∑
ν=1

∑
ℓ

(−i)ℓ
[
A(L)

ν T LS
ν + A(S)

ν T SS
ν

]
GSS (n, 1, ℓ; ν, 1) Ñ (S)

ℓ (ξ )+

4n0πb
ξ 2 − k2S

N∑
ν=1

∑
ℓ

(−i)ℓA(T )
ν T TT

ν GST (n, 1, ℓ; ν, 1) Ñ (S)
ℓ (ξ ), (59b)

∀n [1,N] ,

A(T )
n =

4n0πb
ξ 2 − k2S

N∑
ν=1

∑
ℓ

(−i)ℓ
[
A(L)

ν T LS
ν GST (n, 1, ℓ; ν, 1) + A(S)

ν T SS
ν GST (n, 1, ℓ; ν, 1)

]
Ñ (T )

ℓ (ξ )+

4n0πb
ξ 2 − k2S

N∑
ν=1

∑
ℓ

(−i)ℓA(T )
ν T TT

ν GSS (n, 1, ℓ; ν, 1) Ñ (T )
ℓ (ξ ). (59c)

t low concentration × scattering and under the hole correction assumption, the solution of Eq. (59) that is close to kS
an be approximated, using Eq. (54), by

ξ 2

k2S
= 1 −

3
2
ic

δ1

(kSa)3
−

9i
2

b
a

c2

(kSa)3

[
1
2

δ
(S)
2

(kSa)2
+

δ
(SL)
2L

(k2S − k2L )a2

]
, (60)

ith, after Eqs. (55) and remembering Eq. (15),

δ1 =

N∑
n=1

(2n + 1)
[
T SS
n + T TT

n

]
(61a)

δ
(S)
2 =

N∑
n=1

N∑
ν=1

iν−n(2ν + 1)
n(n + 1)
ν(ν + 1)

×{ [
T SS
ν T SS

n + T TT
ν T TT

n

]∑
ℓ(−i)ℓGSS(n, 1, ℓ; ν, 1)nℓ(kSb)

+
[
T TT
ν T SS

n + T SS
ν T TT

n

]∑
ℓ(−i)ℓGST (n, 1, ℓ; ν, 1)nℓ(kSb)

}
(61b)

δ
(SL)
2L =

N∑
n=1

N∑
ν=1

iν−n(2ν + 1)
n(n + 1)
ν(ν + 1)

T SL
ν

∑
ℓ

(−i)ℓGLL(n, 1, ℓ; ν, 1)N (L)
ℓ (kS)T LS

n . (61c)

he first order term in Eqs. (60) is exactly the same as in Eq. (57) of Ref. [29]: the elastic and electromagnetic models
re identical to first order in concentration times scattering cross section, and there is no coupling between shear and
ongitudinal waves at this order. Coupling occurs at higher orders.

The effective phase velocity and attenuation of the quasi-rotational coherent wave are plotted in Figs. 3(a) and (b)
espectively, for a concentration c = 6.4% of beads. Experimental results (green curves with squares) of Simon et al. [38]
re compared to those obtained with Refs. [29,30] denoted FW-TK (black dotted curves) and those derived from Eqs. (60)
enoted LCVB (blue solid curves). The red dashed curves labeled ‘‘Num’’ have been obtained by solving the dispersion
quation that results from Eq. (59). The same method was used as for the longitudinal coherent wave, except that the
tarting point of the dichotomy method used was given by Eq. (54). The translation and rotation dipolar resonances of
he dense beads induce a large dispersion of the phase velocity and strong attenuation peaks in the vicinity of 530 kHz
nd 920 kHz. The difference between the Num curve and the LCVB one is larger in the vicinity of the rotation resonance
requency, where σinc = σSL +σST +σTT and hence ϵ are larger. The coupling between longitudinal and shear waves is also
tronger at this resonance frequency, as shown by the difference between the FW-TK curve and the LCVB and/or Num
urves. We still observe a good agreement of all models with Simon’s experimental data [38].

. Conclusion

Multiple scattering effects due to a random distribution of identical spheres have been investigated in the general case
f elastic or poroelastic host media within Fikioris and Waterman’s [20,30] framework. Setting to zero the determinants
15
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Fig. 3. Concentration c = 6.4% of tungsten carbide spheres in an epoxy matrix. (a) Phase velocity and (b) attenuation of the quasi-transverse coherent
ave. Green line with squares: experiment, from Ref. [38], black dotted line: from Eq. (36) of Refs. [29,30], blue solid line: from Eqs. (60), red dashed

ine: from Eq. (59). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

f Eqs. (29) and (44) provides the secular equations for the effective wavenumbers of the longitudinal and rotational
oherent waves. Their closed form solutions, when the product of the concentration with the scattering cross section of
he spheres is low, are given in Eqs. (50) and (51a) for the quasi-longitudinal coherent waves and in Eqs. (54) and (55) for
he quasi-rotational ones. They correspond to asymptotic expansions up to order two in the concentration × scattering
ross section product, introducing thus products between scattering coefficients and, consequently, the coupling between
ongitudinal and rotational waves.

In the case of elastic media, numerical studies have been performed and compared to experimental data for tungsten
arbide spheres in an epoxy matrix. The results show a good agreement. Taking into account the azimuthal dependence
f the fields has a notable influence on the propagation of longitudinal coherent waves only at low frequency.
For rotational coherent waves, the elastic and electromagnetic models provide the same asymptotic expansion up to

irst order in concentration × scattering cross section. There is no coupling between rotational and longitudinal waves
t this order, and the first order term in Eqs. (60) and (61a) is exactly the same as in Eq. (57) of Ref. [29]. The major
ffect of the longitudinal - shear waves coupling is observed at the rotation resonance frequency of the spheres. There
s a good agreement between the numerical solution obtained by setting to zero the determinant of Eq. (59), the closed
orm solutions Eqs. (60) and (61a) and experimental data from Ref. [38].
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Appendix A. The addition theorems coefficients - Useful sums over ℓ

Different letters are often used for the coefficients of the addition theorems, such as [20,29,30,51,59,60] Cµν
mn for the

scalar addition theorem, Aµν
mn and Bµν

mn for the vectorial one ; the Gup (n,m, ℓ; ν, µ) coefficients we use are related to those
through the following equations.
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• For u and p in L,

Gup (n,m, ℓ; ν, µ) = GLL (n,m, ℓ; ν, µ) , with [51,29,59,30], (A.1)∑
ℓ

GLL (n,m, ℓ; ν, µ) ei(µ−m)φj1Pµ−m
ℓ

(
cos θj1

)
h(1)

ℓ

(
kprj1

)
= Cµν

mn , and [51,30] (A.2)

GLL (n,m, ℓ; ν, µ) = (−1)min−ν+ℓ(2n + 1)a(µ, ν| − m, n|ℓ). (A.3)

• For u and p in S or u and p in T ,

Gup (n,m, ℓ; ν, µ) = GSS (n,m, ℓ; ν, µ) , with [51,29,59,30], (A.4)∑
ℓ

GSS (n,m, ℓ; ν, µ) ei(µ−m)φj1Pµ−m
ℓ

(
cos θj1

)
h(1)

ℓ

(
kprj1

)
= Aµν

mn, and [51,30] (A.5)

GSS (n,m, ℓ; ν, µ) = (1 − δn0) (1 − δν0) (−1)ma(µ, ν| − m, n|ℓ)a(ν, n, ℓ). (A.6)

• For p in S and u in T ,

Gup (n,m, ℓ; ν, µ) = Gpu (n,m, ℓ; ν, µ) = GST (n,m, ℓ; ν, µ) , with [51,29,59,30], (A.7)∑
ℓ

GST (n,m, ℓ; ν, µ) ei(µ−m)φj1Pµ−m
ℓ

(
cos θj1

)
h(1)

ℓ

(
kprj1

)
= Bµν

mn, and [51,30] (A.8)

GST (n,m, ℓ; ν, µ) = (1 − δn0) (1 − δν0) (−1)ma(µ, ν| − m, n|ℓ, ℓ − 1)b(ν, n, ℓ). (A.9)

he Gaunt coefficients a(µ, ν| − m, n|ℓ) are defined from [51]

Pm
n

(
cos θ

)
Pµ

ν

(
cos θ

)
=

∑
ℓ

a(m, n|µ, ν|ℓ)Pm+µ

ℓ

(
cos θ

)
, (A.10)

nd the a(µ, ν| − m, n|ℓ, ℓ − 1), a(ν, n, ℓ), b(ν, n, ℓ), coefficients from Eqs. (13,14) in Ref. [30].
For m = −1, owing to the properties of the Gaunt coefficients, as noticed in Refs. [29,30],

GLL(n, −1, ℓ; ν, −1)
GLL(n, 1, ℓ; ν, 1)

=
GSS(n, −1, ℓ; ν, −1)
GSS(n, 1, ℓ; ν, 1)

= −
GST (n, −1, ℓ; ν, −1)
GST (n, 1, ℓ; ν, 1)

=
(ν − 1)! (n + 1)!
(ν + 1)! (n − 1)!

. (A.11a)

fter Ref. [52],

GST (n, 0, ℓ; ν, 0) = 0. (A.12)

rom Eqs. (15), (24), (A.1) and (A.10),∑
ℓ

(−1)ℓiℓ+1GLL (n,m, ℓ; ν,m) = (2n + 1)in−ν+1(−1)m
∑

ℓ

a(m, ν|m, n|ℓ) = iδ0m
η(m)

ν

γ
(m)
n

, (A.13)

and, after Eq. (30) in Ref. [30],∑
ℓ

(−1)ℓiℓ+1GSS (n, 1, ℓ; ν, 1) = −i
∑

ℓ

(−i)ℓa(1, ν| − 1, n|ℓ)a(ν, n, ℓ) =

i
η(1)

ν

γ
(1)
n

=

∑
ℓ

(−1)ℓiℓ+1GST (n, 1, ℓ; ν, 1) , (A.14a)

nd Eq. (A.10) that provides∑
ℓ

a (0, ν|0, n|ℓ) = 1, (A.15)

long with Eqs. (82,13) in Ref. [30] and Eq. (15),∑
ℓ

iℓ+1GSS (n, 0, ℓ; ν, 0) =

∑
ℓ

(−i)ℓGSS (n, 0, ℓ; ν, 0) = 0. (A.16)

ppendix B

The M (0)
pq , M (1)

pq needed in the calculation of the y(1)p , y(2)p of Eqs. (49) and (53) are obtained from the expansions of
ll functions of ξ around the k wavenumber it is supposed to be close to. In the following, r is no longer equal to the
p
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m

w

a

T
t
ϵ

odulus of r⃗ , but is a mute index related to a local polarization state.

M (0)
pq =

−iπ
σinc

1
(kpb)1/2(kqb)1/2

∑
r

δkr kp

∑
n

η
(m)
n

γ
(m)
n

T qr
n , (B.1)

M (1)
pq =

−iπ
σ 2
inc

1
(kpb)1/2(kqb)1/2

∑
r

∑
s

∑
u

∑
n

∑
ν

η
(m)
n η(m)

ν

γ
(m)
n γ

(m)
ν

T qs
ν Q̄us

nν(kp)T
ur
n δkr kp , (B.2)

or, using Eqs. (31) and (37),

M (1)
pq = −

π2

σ 2
inc

i
(kpb)1/2(kqb)1/2

∑
r

δkr kp

∑
u

∑
s

δkuks

∑
n

∑
ν

η
(m)
n

γ
(m)
ν

T qs
ν T ur

n ×[
(1 − δkukp )

h(us)
nν (kp)

(k2p − k2u)b2
+ δkukp

q(us)nν (kp)
2(kpb)2

+
j(us)nν (kp)
(kub)3

]

+
π2

σ 2
inc

1
(kpb)1/2(kqb)1/2

∑
r

δkr kp

∑
u

∑
s

δkuks

∑
n

∑
ν

η
(m)
n η(m)

ν

γ
(m)
n γ

(m)
ν

(1 − δkukp )
T qs
ν T ur

n

kub(k2p − k2u)b2
(B.3a)

ith

q(us)nν (kp) =

∑
ℓ

(−i)ℓGsu(n,m, ℓ; ν,m)nℓ(kpb), (B.4a)

nℓ(x) = h(1)
ℓ (x)

{
−xj′ℓ(x) +

[
ℓ(ℓ + 1) − x2

]
jℓ(x)

}
− x2j′ℓ(x)h

′

ℓ(x), (B.4b)

nd

h(us)
nν (kp) =

Hus
nν(kp)
ikub

η(m)
ν

γ
(m)
n

=

∑
ℓ

(−i)ℓGsu(n,m, ℓ; ν,m)N (u)
ℓ (kp), (B.5a)

j(us)nν (kp) = (kub)2Jusnν(kp)
η(m)

ν

γ
(m)
n

=

∑
ℓ

(−i)ℓGsu(n,m, ℓ; ν,m)L(u)ℓ (kp). (B.5b)

he expressions of all M (n)
pq thus depend upon the type of coherent waves involved (quasi-longitudinal or quasi-rotational),

hrough m and the δkr kp , and those needed in the asymptotic expressions of the effective wavenumbers, up to order 2 in
, may be written as:

• for m = 0

M (0)
pq =

−iπ
σinc

1
(kpb)1/2(kqb)1/2

∑
r

∑
n

(2n + 1)T qp
n , (B.6)

M (1)
pp = −

π2

σ 2
inc

i
(kpb)

∑
q

∑
n

∑
ν

iν−n(2ν + 1)T pq
ν T qp

n ×[
(1 − δqp)

h(qq)
nν (kp)

(k2p − k2q)b2
+ δqp

q(qq)nν (kp)
2(kpb)2

+
j(qq)nν (kp)
(kqb)3

]

+
π2

σ 2
inc

1
(kpb)

∑
q̸=p

∑
n

∑
ν

(2n + 1)(2ν + 1)
T pq
ν T qp

n

kqb(k2p − k2q)b2
(B.7)

• for m = 1
The δkr kp depend upon p, whether in L or not, and the Mpq needed for the expansion of the effective wavenumbers
as well.

– for p ∈ L

M (0)
pq =

−iπ
σinc

1
2(kpb)1/2(kqb)1/2

∑
n

(2n + 1)T qp
n , (B.8)

M (1)
pp = −

π2

σ 2

i
2(kpb)

∑∑
δkqks

∑∑
iν−n(2ν + 1)

n(n + 1)
ν(ν + 1)

T ps
ν T qp

n ×
inc q s n ν
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[
(1 − δqp)

h(qs)
nν (kp)

(k2p − k2q)b2
+ δqp

q(qs)nν (kp)
2(kpb)2

+
j(qs)nν (kp)
(kqb)3

]

+
π2

σ 2
inc

1
4(kpb)

∑
q̸=p

∑
s

δkqks

∑
n

∑
ν

(2n + 1)(2ν + 1)
T ps
ν T qp

n

kqb(k2p − k2q)b2
(B.9a)

– for p ∈ S

M (0)
pq =

−iπ
σinc

1
2(kpb)1/2(kqb)1/2

∑
n

(2n + 1)
(
T qp
n + T qp+1

n

)
, (B.10)

M (0)
qp =

−iπ
σinc

1
2(kpb)1/2(kqb)1/2

∑
ν

(2ν + 1)
(
T pq
ν + T pq+1
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, (B.11)
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]

+
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1
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(B.12a)

M (1)
pp+1 = −
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∑
q
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∑
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+
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